A well-dated δ18O record in a stalagmite from a cave in the Klamath Mountains, Oregon, with a sampling interval of 50 yr, indicates that the climate of this region cooled essentially synchronously with Younger Dryas climate change elsewhere in the Northern Hemisphere. The δ18O record also indicates significant century-scale temperature variability during the early Holocene. The δ13C record suggests increasing biomass over the cave through the last deglaciation, with century-scale variability but with little detectable response of vegetation to Younger Dryas cooling.
We describe efforts to model the Holocene extent of the Rhone Glacier, Switzerland, using four paleoclimate records as templates for paleo-equilibrium line altitude to identify candidate driving mechanisms of glaciers in the Alps. We evaluate the success of each paleoclimate template by comparing cosmogenic 10 Be and 14 C concentrations in pro-glacial bedrock derived from modeled glacier configurations to measured values. An adequate fit can be obtained using mean summer insolation for 46.51N. However, use of the Dongee Cave, China, speleothem record yields the best fit by accounting for both sub-millennial (e.g. Little Ice Age and Medieval Warm Period) and multi-millennial climate variations (summer insolation). Our result indicates that glaciers in the Alps primarily responded to changes in insolation during the Holocene were smaller than today during the early Holocene when insolation was relatively high, and became larger during the mid to late Holocene. Superimposed on the first-order insolation response were shorter, sometimes large amplitude, length changes in response to short-lived climate events such as the Medieval Warm Period and the LIA.
Stagnation of the terminal region of a glacier occurs in response to sufficiently large and rapid climatic warming, so the presence of stagnation deposits provides quantitative information on the climate change that forced retreat. Here we use a simple flow-line glacier model to investigate the relationship between stagnation, climate forcing and aspects of the glacier bed. For climatic warming greater than the threshold to cause stagnation, larger or faster warming events cause longer regions of a glacier to stagnate. Smaller or slower warming episodes, below the threshold for stagnation, cause retreat while active flow persists along the entire glacier length. The threshold for stagnation depends not only on the climatic forcing but also on many other aspects of the glacier, with stagnation favored by factors including a lower mean bed slope with greater roughness. Quantitative determination of the climatic forcing consistent with the occurrence or absence of stagnation deposits requires that these site-specific characteristics be incorporated in modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.