Beginning in 2003, highly pathogenic avian influenza (HPAI) H5N1 virus spread across Southeast Asia, causing unprecedented epidemics. Thailand was massively infected in 2004 and 2005 and continues today to experience sporadic outbreaks. While research findings suggest that the spread of HPAI H5N1 is influenced primarily by trade patterns, identifying the anthropogenic risk factors involved remains a challenge. In this study, we investigated which anthropogenic factors played a role in the risk of HPAI in Thailand using outbreak data from the “second wave” of the epidemic (3 July 2004 to 5 May 2005) in the country. We first performed a spatial analysis of the relative risk of HPAI H5N1 at the subdistrict level based on a hierarchical Bayesian model. We observed a strong spatial heterogeneity of the relative risk. We then tested a set of potential risk factors in a multivariable linear model. The results confirmed the role of free-grazing ducks and rice-cropping intensity but showed a weak association with fighting cock density. The results also revealed a set of anthropogenic factors significantly linked with the risk of HPAI. High risk was associated strongly with densely populated areas, short distances to a highway junction, and short distances to large cities. These findings highlight a new explanatory pattern for the risk of HPAI and indicate that, in addition to agro-environmental factors, anthropogenic factors play an important role in the spread of H5N1. To limit the spread of future outbreaks, efforts to control the movement of poultry products must be sustained.
Ecological changes are recognized as an important driver behind the emergence of infectious diseases. The prevalence of infection in ticks depends upon ecological factors that are rarely taken into account simultaneously. Our objective was to investigate the influences of forest fragmentation, vegetation, adult tick hosts, and habitat on the infection prevalence of three tick-borne bacteria, Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, and Rickettsia sp. of the spotted fever group, in questing Ixodes ricinus ticks, taking into account tick characteristics. Samples of questing nymphs and adults were taken from 61 pastures and neighboring woodlands in central France. The ticks were tested by PCR of pools of nymphs and individual adults. The individual infection prevalence was modeled using multivariate regression. The highest infection prevalences were found in adult females collected in woodland sites for B. burgdorferi sensu lato and A. phagocytophilum (16.1% and 10.7%, respectively) and in pasture sites for Rickettsia sp. (8.7%). The infection prevalence in nymphs was lower than 6%. B. burgdorferi sensu lato was more prevalent in woodlands than in pastures. Forest fragmentation favored B. burgdorferi sensu lato and A. phagocytophilum prevalence in woodlands, and in pastures, the B. burgdorferi sensu lato prevalence was favored by shrubby vegetation. Both results are probably because large amounts of edges or shrubs increase the abundance of small vertebrates as reservoir hosts. The Rickettsia sp. prevalence was maximal on pasture with medium forest fragmentation. Female ticks were more infected by B. burgdorferi sensu lato than males and nymphs in woodland sites, which suggests an interaction between the ticks and the bacteria. This study confirms the complexity of the tick-borne pathogen ecology. The findings support the importance of small vertebrates as reservoir hosts and make a case for further studies in Europe on the link between the composition of the reservoir host community and the infection prevalence in ticks.
Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However, the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental factors influencing the velocity of bluetongue (BT) spread in France during the 2007–2008 epizootic wave to determine which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread.
Understanding the spatial dynamics of an infectious disease is critical when attempting to predict where and how fast the disease will spread. We illustrate an approach using a trend-surface analysis (TSA) model combined with a spatial error simultaneous autoregressive model (SARerr model) to estimate the speed of diffusion of bluetongue (BT), an infectious disease of ruminants caused by bluetongue virus (BTV) and transmitted by Culicoides. In a first step to gain further insight into the spatial transmission characteristics of BTV serotype 8, we used 2007-2008 clinical case reports in France and TSA modelling to identify the major directions and speed of disease diffusion. We accounted for spatial autocorrelation by combining TSA with a SARerr model, which led to a trend SARerr model. Overall, BT spread from north-eastern to south-western France. The average trend SARerr-estimated velocity across the country was 5.6 km/day. However, velocities differed between areas and time periods, varying between 2.1 and 9.3 km/day. For more than 83% of the contaminated municipalities, the trend SARerr-estimated velocity was less than 7 km/day. Our study was a first step in describing the diffusion process for BT in France. To our knowledge, it is the first to show that BT spread in France was primarily local and consistent with the active flight of Culicoides and local movements of farm animals. Models such as the trend SARerr models are powerful tools to provide information on direction and speed of disease diffusion when the only data available are date and location of cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.