Brain-derived neurotrophic factor (BDNF) is synthesized by small neuron cell bodies in the dorsal root ganglia (DRG) and is anterogradely transported to primary afferent terminals in the dorsal horn where it is involved in the modulation of painful stimuli. Here we show that BDNF is released in the rat isolated dorsal horn after chemical stimulation by capsaicin or electrical stimulation of dorsal roots. Capsaicin superfusion (1-100 M) induced a dose-dependent release of BDNF, measured using ELISA. The highest dose of capsaicin also induced a depletion of BDNF protein in the dorsal horn. BDNF release was also seen after electrical stimulation of the dorsal roots at C-fiber strength. This release was encoded by specific patterns of afferent fiber stimulation. Neither continuous low-frequency (480 pulses, 1 Hz) nor tetanic high-frequency (300 pulses in 3 trains, 100 Hz) stimulation evoked release of BDNF, although substance P (SP) release was observed under both of these conditions. However, BDNF was released after short bursts of high-frequency stimulation (300 pulses in 75 trains, 100 Hz) along with SP and glutamate. The NMDA antagonist D-AP-5 inhibited electrically evoked BDNF release. BDNF release was also measured after systemic or intrathecal NGF treatment. This upregulated BDNF content in the DRG and increased the capsaicin-evoked release of BDNF. Similarly, the amount of BDNF released by burst stimulation was increased after NGF treatment. This activity-dependent release continued to be encoded solely by this stimulation pattern. These experiments demonstrate that BDNF release in the dorsal horn is encoded by specific patterns of afferent fiber stimulation and is mediated by NMDA receptor activation.
Corticotropin-releasing factor (CRF) 1 receptor (CRF(1)) activation in the brain is a core pathway orchestrating the stress response. Anatomical data also support the existence of CRF signaling components within the colon. We investigated the colonic response to intraperitoneal (ip) injection of cortagine, a newly developed selective CRF(1) peptide agonist. Colonic motor function and visceral motor response (VMR) were monitored by using a modified miniaturized pressure transducer catheter in adult conscious male Sprague-Dawley rats and C57Bl/6 mice. Colonic permeability was monitored by the Evans blue method and myenteric neurons activation by Fos immunohistochemistry. Compared with vehicle, cortagine (10 microg/kg ip) significantly decreased the distal colonic transit time by 45% without affecting gastric transit, increased distal and transverse colonic contractility by 35.6 and 66.2%, respectively, and induced a 7.1-fold increase in defecation and watery diarrhea in 50% of rats during the first hour postinjection whereas intracerebroventricular (icv) cortagine (3 microg/rat) had lesser effects. Intraperitoneal (ip) cortagine also increased colonic permeability, activated proximal and distal colonic myenteric neurons, and induced visceral hypersensitivity to a second set of phasic colorectal distention (CRD). The CRF antagonist astressin (10 mug/kg ip) abolished ip cortagine-induced hyperalgesia whereas injected icv it had no effect. In mice, cortagine (30 microg/kg ip) stimulated defecation by 7.8-fold, induced 60% incidence of diarrhea, and increased VMR to CRD. Stresslike colonic alterations induced by ip cortagine in rats and mice through restricted activation of peripheral CRF(1) receptors support a role for peripheral CRF(1) signaling as the local arm of the colonic response to stress.
Visceral pain modulation by chronic stress in mice has been little studied. Electromyography (EMG) recording of abdominal muscle contractions, as a proxy to the visceromotor response (VMR), requires electrode implantation and post-surgical single housing (SH) which could affect the VMR to stress. To test this hypothesis, male mice had electrode implantation surgery (S) plus SH, or no surgery and were group housed (NS-GH) or single housed (NS-SH) and exposed to either water avoidance stress (WAS, 1 h/day) or left undisturbed in their home cages for 10 days. The VMR to phasic ascending colorectal distension (CRD) was assessed before (basal) and 24 h after 10 days of WAS or no stress using a surgery-free method of intraluminal colonic pressure (ICP) recording (solid-state manometry). WAS heightened significantly the VMR to CRD at 30, 45, and 60 mmHg in S-SH vs. NS-GH, but not compared to NS-SH conscious mice. Compared to basal CRD, WAS increased VMR at 60 mmHg in the S-SH group and decreased it at 30–60 mmHg in NS-GH mice, while having no effect in NS-SH mice. The average defecation during the hour of repeated WAS over 10 days was 1.9 and 2.4 fold greater in S-SH vs. NS-GH and NS-SH mice, respectively. These data indicate that the combination of S-SH required for VMR monitoring with EMG is an important component of repeated WAS-induced post-stress visceral hypersensitivity and defecation in mice.
Background and aims: Activation of corticotropin releasing factor 1 (CRF 1 ) receptors is involved in stress related responses and visceral pain, while activation of CRF 2 receptors dampens the endocrine and some behavioural stress responses. We hypothesised that CRF 2 receptor activation may influence visceral pain induced by colorectal distension (CRD) in conscious rats, and assessed the possible sites and mechanisms of action. Methods: Male Sprague-Dawley rats were exposed to CRDs (60 mm Hg, 10 minutes twice, with a 10 minute rest interval). Visceromotor responses (VMR) were measured by electromyography or visual observation. Spinal (L6-S1) extracellular signal regulated kinase 1/2 (ERK 1/2) activation following in vivo CRD and CRF 2 receptor gene expression in the T13-S1 dorsal root ganglia (DRG) and spinal cord were determined. Inferior splanchnic afferent (ISA) activity to CRD (0.4 ml, 20 seconds) was assessed by electrophysiological recording in an in vitro ISA nerve-inferior mesenteric artery (intra-arterial)-colorectal preparation. Results: In controls, VMR to the second CRD was mean 31 (SEM 4)% higher than that of the first (p,0.05). The selective CRF 2 agonist, human urocortin 2 (hUcn 2, at 10 and 20 mg/kg), injected intravenous after the first distension, prevented sensitisation and reduced the second response by 8 (1)% and 30 (5)% (p,0.05) compared with the first response, respectively. RT-PCR detected CRF 2 receptor gene expression in the DRG and spinal cord. CRD (60 mm Hg for 10 minutes) induced phosphorylation of ERK 1/2 in neurones of lumbosacral laminae I and IIo and the response was dampened by intravenous hUcn 2. CRD, in vitro, induced robust ISA spike activity that was dose dependently blunted by hUcn 2 (1-3 mg, intraarterially). The CRF 2 receptor antagonist, astressin 2 -B (200 mg/kg subcutaneously or 20 mg intraarterially) blocked the hUcn 2 inhibitory effects in vivo and in vitro. Conclusions: Peripheral injection of hUcn 2 blunts CRD induced visceral pain, colonic afferent, and spinal L6-S1 ERK 1/2 activity through CRF 2 receptor activation in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.