Brain-derived neurotrophic factor (BDNF) is synthesized by small neuron cell bodies in the dorsal root ganglia (DRG) and is anterogradely transported to primary afferent terminals in the dorsal horn where it is involved in the modulation of painful stimuli. Here we show that BDNF is released in the rat isolated dorsal horn after chemical stimulation by capsaicin or electrical stimulation of dorsal roots. Capsaicin superfusion (1-100 M) induced a dose-dependent release of BDNF, measured using ELISA. The highest dose of capsaicin also induced a depletion of BDNF protein in the dorsal horn. BDNF release was also seen after electrical stimulation of the dorsal roots at C-fiber strength. This release was encoded by specific patterns of afferent fiber stimulation. Neither continuous low-frequency (480 pulses, 1 Hz) nor tetanic high-frequency (300 pulses in 3 trains, 100 Hz) stimulation evoked release of BDNF, although substance P (SP) release was observed under both of these conditions. However, BDNF was released after short bursts of high-frequency stimulation (300 pulses in 75 trains, 100 Hz) along with SP and glutamate. The NMDA antagonist D-AP-5 inhibited electrically evoked BDNF release. BDNF release was also measured after systemic or intrathecal NGF treatment. This upregulated BDNF content in the DRG and increased the capsaicin-evoked release of BDNF. Similarly, the amount of BDNF released by burst stimulation was increased after NGF treatment. This activity-dependent release continued to be encoded solely by this stimulation pattern. These experiments demonstrate that BDNF release in the dorsal horn is encoded by specific patterns of afferent fiber stimulation and is mediated by NMDA receptor activation.
Damage to peripheral nerves is associated with changes in excitability and/or phenotype of primary afferent neurons as well as increased neuronal excitability (central sensitization) and reduced inhibitory tone in the dorsal horn. For instance, in dorsal root ganglia (DRG) brain derived neurotrophic factor (BDNF) is down-regulated in small cells whilst de novo expressed in large diameter cells. In the dorsal horn, GABA content is decreased. In this study, in a dorsal horn, 'with dorsal roots attached' preparation obtained from spinal nerve lesioned Wistar rats, stimulation of ipsilateral dorsal roots at either A fibre or A + C fibre strength did not evoke release of BDNF. In separate experiments, activity-induced release of GABA in the isolated dorsal horn of neuropathic rats was significantly reduced compared to release in sham operated rats. GABA release could be significantly restored following topical application of BDNF through the dorsal horn preparation. Finally, neuropathic rats developed thermal and mechanical hypersensitivity and thermal hyperalgesia was reduced by intrathecal injection of BDNF. We concluded that BDNF-induced release of GABA could be a mechanism to explain the antinociceptive action of intrathecal BDNF in neuropathic animals. Furthermore, reduced availability of sensory neuron-derived BDNF might contribute to the reduced GABAergic tone in the dorsal horn of neuropathic rats.
The retina is an area of the central nervous system that possesses intrinsic cholinergic neurones which release acetylcholine (ACh) in response to stimulation with flickering light. Using an eye-cup preparation in anaesthetized rabbits we found that when the retina was exposed to the P2-purinoceptor antagonist, PPADS, the light-evoked release of ACh was strikingly increased (by over 40%). In contrast, ATP reduced the -light-evoked release of ACh by 20%. The inhibitory effect of ATP was not due to its catabolism to adenosine because it was not affected by the A,-adenosine receptor antagonist, DPCPX, in combination with adenosine deaminase. The actions of both ATP and PPADS were completely blocked by strychnine. We conclude that during physiological stimulation of the retina with light, ATP is co-released with ACh and partially inhibits ACh release by activating (with ACh) an inhibitory glycinergic feedback loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.