Fast Internet-wide scanning has opened new avenues for security research, ranging from uncovering widespread vulnerabilities in random number generators to tracking the evolving impact of Heartbleed. However, this technique still requires significant effort: even simple questions, such as, "What models of embedded devices prefer CBC ciphers?", require developing an application scanner, manually identifying and tagging devices, negotiating with network administrators, and responding to abuse complaints. In this paper, we introduce Censys, a public search engine and data processing facility backed by data collected from ongoing Internet-wide scans. Designed to help researchers answer security-related questions, Censys supports full-text searches on protocol banners and querying a wide range of derived fields (e.g., 443.https.cipher). It can identify specific vulnerable devices and networks and generate statistical reports on broad usage patterns and trends. Censys returns these results in sub-second time, dramatically reducing the effort of understanding the hosts that comprise the Internet. We present the search engine architecture and experimentally evaluate its performance. We also explore Censys's applications and show how questions asked in recent studies become simple to answer.
The Heartbleed vulnerability took the Internet by surprise in April 2014. The vulnerability, one of the most consequential since the advent of the commercial Internet, allowed attackers to remotely read protected memory from an estimated 24-55% of popular HTTPS sites. In this work, we perform a comprehensive, measurementbased analysis of the vulnerability's impact, including (1) tracking the vulnerable population, (2) monitoring patching behavior over time, (3) assessing the impact on the HTTPS certificate ecosystem, and (4) exposing real attacks that attempted to exploit the bug. Furthermore, we conduct a large-scale vulnerability notification experiment involving 150,000 hosts and observe a nearly 50% increase in patching by notified hosts. Drawing upon these analyses, we discuss what went well and what went poorly, in an effort to understand how the technical community can respond more effectively to such events in the future.
No abstract
Certificate Authorities (CAs) regularly make mechanical errors when issuing certificates. To quantify these errors, we introduce ZLint, a certificate linter that codifies the policies set forth by the CA/Browser Forum Baseline Requirements and RFC 5280 that can be tested in isolation. We run ZLint on browser-trusted certificates in Censys and systematically analyze how well CAs construct certificates. We find that the number errors has drastically reduced since 2012. In 2017, only 0.02% of certificates have errors. However, this is largely due to a handful of large authorities that consistently issue correct certificates. There remains a long tail of small authorities that regularly issue non-conformant certificates. We further find that issuing certificates with errors is correlated with other types of mismanagement and for large authorities, browser action. Drawing on our analysis, we conclude with a discussion on how the community can best use lint data to identify authorities with worrisome organizational practices and ensure long-term health of the Web PKI.Permission to freely reproduce all or part of this paper for noncommercial purposes is granted provided that copies bear this notice and the full citation on the first page. Reproduction for commercial purposes is strictly prohibited without the prior written consent of the Internet Society, the first-named author (for reproduction of an entire paper only), and the author's employer if the paper was prepared within the scope of employment.
We investigate the security of Diffie-Hellman key exchange as used in popular Internet protocols and find it to be less secure than widely believed. First, we present Logjam, a novel flaw in TLS that lets a man-in-the-middle downgrade connections to "export-grade" Diffie-Hellman. To carry out this attack, we implement the number field sieve discrete log algorithm. After a week-long precomputation for a specified 512-bit group, we can compute arbitrary discrete logs in that group in about a minute. We find that 82% of vulnerable servers use a single 512-bit group, allowing us to compromise connections to 7% of Alexa Top Million HTTPS sites. In response, major browsers are being changed to reject short groups. We go on to consider Diffie-Hellman with 768-and 1024-bit groups. We estimate that even in the 1024-bit case, the computations are plausible given nation-state resources. A small number of fixed or standardized groups are used by millions of servers; performing precomputation for a single 1024-bit group would allow passive eavesdropping on 18% of popular HTTPS sites, and a second group would allow decryption of traffic to 66% of IPsec VPNs and 26% of SSH servers. A close reading of published NSA leaks shows that the agency's attacks on VPNs are consistent with having achieved such a break. We conclude that moving to stronger key exchange methods should be a priority for the Internet community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.