Abstractk-SLAM is a highly efficient algorithm for the characterization of metagenomic data. Unlike other ultra-fast metagenomic classifiers, full sequence alignment is performed allowing for gene identification and variant calling in addition to accurate taxonomic classification. A k-mer based method provides greater taxonomic accuracy than other classifiers and a three orders of magnitude speed increase over alignment based approaches. The use of alignments to find variants and genes along with their taxonomic origins enables novel strains to be characterized. k-SLAM's speed allows a full taxonomic classification and gene identification to be tractable on modern large data sets. A pseudo-assembly method is used to increase classification accuracy by up to 40% for species which have high sequence homology within their genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.