Carbonation of epoxidized linseed oil (CELO) containing five-membered cyclic carbonate (CC5) groups has been optimized to 95% by reacting epoxidized linseed oil (ELO) with carbon dioxide (CO2) and tetrabutylammonium bromide (TBAB) as catalysts. The effect of reaction variables (temperature, CO2 pressure, and catalyst concentration) on the reaction parameters (conversion, carbonation and selectivity) in an autoclave system was investigated. The reactions were monitored, and the products were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), carbon-13 nuclear magnetic resonance (13C-NMR) and proton nuclear magnetic resonance (1H-NMR) spectroscopies. The results showed that when carrying out the reaction at high temperature (from 90 °C to 120 °C) and CO2 pressure (60–120 psi), the reaction’s conversion improves; however, the selectivity of the reaction decreases due to the promotion of side reactions. Regarding the catalyst, increasing the TBAB concentration from 2.0 to 5.0 w/w% favors selectivity. The presence of a secondary mechanism is based on the formation of a carboxylate ion, which was formed due to the interaction of CO2 with the catalyst and was demonstrated through 13C-NMR and FT-IR. The combination of these factors makes it possible to obtain the largest conversion (96%), carbonation (95%), and selectivity (99%) values reported until now, which are obtained at low temperature (90 °C), low pressure (60 psi) and high catalyst concentration (5.0% TBAB).
The objective of this paper is to study adherence and corrosion wear resistance of biobased polymers derived from epoxidized linseed oil (ELO) deposited on galvanized iron sheets. The adhesion and anticorrosive properties of the pure epoxy resin (ELO) were compared with those that contained bisphenol A (BFA) and carbon black (CB), which were polymerized by oxirane ring opening catalyzed by aluminum triflate (ATf). Fourier Transform Infrared Spectroscopy (FTIR) confirmed the formation of the different biobased polymers as coatings. To evaluate the performance to the corrosion resistance each coating was tested to adhesion and accelerated weathering within a salt spray chamber. The use of BFA provided greater adhesion than pure ELO coatings. Additionally, the addition of small loads of CB improved the appearance, adhesion, and durability of the coating, thus decreasing the corrosion of the galvanized sheets. Finally, the interactions that occur at the interface between the different polymeric matrices and the substrate surface, which allow improving the corrosion resistance were analyzed.
Los Poliuretanos (PU) son una de las principales familias de polímeros en producción a nivel a mundial debido al amplio rango de aplicaciones en el sector industrial. La síntesis de PU comerciales se realiza a través de la poliadición de polioles con diisocianatos. Sin embargo, el impacto negativo que representa el uso de fuentes del petróleo (principalmente isocianatos) para la salud y el medio ambiente ha promovido el desarrollo de rutas eco-amigables que utilicen recursos renovables y seguros. Los PU biobasados representan una excelente alternativa para sustituir a los PU convencionales. Dentro de las tecnologías desarrolladas, la reacción entre carbonatos cíclicos (CC) y poliaminas para formar Poliuretanos tipo No-Isocianato (PUNI) es una de las más prometedoras. El objetivo del capítulo es dar un panorama general sobre la síntesis de PU biobasados, siguiendo los principios de la “Química Verde”. Dentro de los temas a tratar, se presentan las diferentes fuentes naturales propuestas como precursores de monómeros, haciendo hincapié en los obtenidos a partir de Aceites Vegetales. Se profundiza en los PUNI y en las rutas para obtener CC, principalmente a partir de la síntesis previa de epóxidos y posterior reacción con CO2. Adicionalmente, se hace énfasis en las características de la reacción de aminólisis, así como en los principales parámetros y técnicas de caracterización. Finalmente, se hace una revisión de los avances, aplicaciones actuales y perspectiva futura de los PU biobasados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.