Traffic prediction is a flourishing research field due to its importance in human mobility in the urban space. Despite this, existing studies only focus on short-term prediction of up to few hours in advance, with most being up to one hour only. Long-term traffic prediction can enable more comprehensive, informed, and proactive measures against traffic congestion and is therefore an important task to explore. In this paper, we explore the task of long-term traffic prediction; where we predict traffic up to 24 hours in advance. We note the weaknesses of existing models-which are based on recurrent structures-for long-term traffic prediction and propose a modified Transformer model "TrafFormer". Experiments comparing our model with existing hybrid neural network models show the superiority of our model.
Similar trajectory search is a crucial task that facilitates many downstream spatial data analytic applications. Despite its importance, many of the current literature focus solely on the trajectory’s spatial similarity while neglecting the temporal information. Additionally, the few papers that use both the spatial and temporal features based their approach on a traditional point-to-point comparison. These methods model the importance of the spatial and temporal aspect of the data with only a single, pre-defined balancing factor for all trajectories, even though the relative spatial and temporal balance can change from trajectory to trajectory. In this article, we propose the first spatio-temporal, deep-representation-learning-based approach to similar trajectory search. Experiments show that utilizing both features offers significant improvements over existing point-to-point comparison and deep-representation-learning approach. We also show that our deep neural network approach is faster and performs more consistently compared to the point-to-point comparison approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.