The next generation "Stage-4" ground-based cosmic microwave background (CMB) experiment, CMB-S4, consisting of dedicated telescopes equipped with highly sensitive superconducting cameras operating at the South Pole, the high Chilean Atacama plateau, and possibly northern hemisphere sites, will provide a dramatic leap forward in our understanding of the fundamental nature of space and time and the evolution of the Universe. CMB-S4 will be designed to cross critical thresholds in testing inflation, determining the number and masses of the neutrinos, constraining possible new light relic particles, providing precise constraints on the nature of dark energy, and testing general relativity on large scales.CMB-S4 is intended to be the definitive ground-based CMB project. It will deliver a highly constraining data set with which any model for the origin of the primordial fluctuations-be it inflation or an alternative theory-and their evolution to the structure seen in the Universe today must be consistent. While we have learned a great deal from CMB measurements, including discoveries that have pointed the way to new physics, we have only begun to tap the information encoded in CMB polarization, CMB lensing and other secondary effects. The discovery space from these and other yet to be imagined effects will be maximized by designing CMB-S4 to produce high-fidelity maps, which will also ensure enormous legacy value for CMB-S4. CMB-S4 is the logical successor to the Stage-3 CMB projects which will operate over the next few years. For maximum impact, CMB-S4 should be implemented on a schedule that allows a transition from Stage 3 to Stage 4 that is as seamless and as timely as possible, preserving the expertise in the community and ensuring a continued stream of CMB science results. This timing is also necessary to ensure the optimum synergistic enhancement of the science return from contemporaneous optical surveys (e.g., LSST, DESI, Euclid and WFIRST). Information learned from the ongoing Stage-3 experiments can be easily incorporated into CMB-S4 with little or no impact on its design. In particular, additional information on the properties of Galactic foregrounds would inform the detailed distribution of detectors among frequency bands in CMB-S4. The sensitivity and fidelity of the multiple band foreground measurements needed to realize the goals of CMB-S4 will be provided by CMB-S4 itself, at frequencies just below and above those of the main CMB channels. This timeline is possible because CMB-S4 will use proven existing technology that has been developed and demonstrated by the CMB experimental groups over the last decade. There are, to be sure, considerable technical challenges presented by the required scaling-up of the instrumentation and by the scope and complexity of the data analysis and interpretation. CMB-S4 will require: scaled-up superconducting detector arrays with well-understood and robust material properties and processing techniques; high-throughput mmwave telescopes and optics with unprecedented precisi...
We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way. LSST will be a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachón in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg 2 field of view, a 3.2-gigapixel camera, and six filters (ugrizy) covering the wavelength range 320-1050 nm. The project is in the construction phase and will begin regular survey operations by 2022. About 90% of the observing time will be devoted to a deep-wide-fast survey mode that will uniformly observe a 18,000 deg 2 region about 800 times (summed over all six bands) during the anticipated 10 yr of operations and will yield a co-added map to r∼27.5. These data will result in databases including about 32 trillion observations of 20 billion galaxies and a similar number of stars, and they will serve the majority of the primary science programs. The remaining 10% of the observing time will be allocated to special projects such as Very Deep and Very Fast time domain surveys, whose details are currently under discussion. We illustrate how the LSST science drivers led to these choices of system parameters, and we describe the expected data products and their characteristics.
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 µK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r) = 0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 µK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensorto-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources a .
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.