Most of the genetic information has been lost or transferred to the nucleus during the evolution of mitochondria. Nevertheless, mitochondria have retained their own genome that is essential for oxidative phosphorylation (OXPHOS). In mammals, a gene-dense circular mitochondrial DNA (mtDNA) of about 16.5 kb encodes 13 proteins, which constitute only 1% of the mitochondrial proteome. Mammalian mtDNA is present in thousands of copies per cell and mutations often affect only a fraction of them. Most pathogenic human mtDNA mutations are recessive and only cause OXPHOS defects if present above a certain critical threshold. However, emerging evidence strongly suggests that the proportion of mutated mtDNA copies is not the only determinant of disease but that also the absolute copy number matters. In this review, we critically discuss current knowledge of the role of mtDNA copy number regulation in various types of human diseases, including mitochondrial disorders, neurodegenerative disorders and cancer, and during ageing. We also provide an overview of new exciting therapeutic strategies to directly manipulate mtDNA to restore OXPHOS in mitochondrial diseases.
Pathogenic variants in
FBXL
4
cause a severe encephalopathic syndrome associated with mt
DNA
depletion and deficient oxidative phosphorylation. To gain further insight into the enigmatic pathophysiology caused by
FBXL
4 deficiency, we generated homozygous
Fbxl4
knockout mice and found that they display a predominant perinatal lethality. Surprisingly, the few surviving animals are apparently normal until the age of 8–12 months when they gradually develop signs of mitochondrial dysfunction and weight loss. One‐year‐old
Fbxl4
knockouts show a global reduction in a variety of mitochondrial proteins and mt
DNA
depletion, whereas lysosomal proteins are upregulated. Fibroblasts from patients with
FBXL
4 deficiency and human
FBXL
4
knockout cells also have reduced steady‐state levels of mitochondrial proteins that can be attributed to increased mitochondrial turnover. Inhibition of lysosomal function in these cells reverses the mitochondrial phenotype, whereas proteasomal inhibition has no effect. Taken together, the results we present here show that
FBXL
4 prevents mitochondrial removal via autophagy and that loss of
FBXL
4 leads to decreased mitochondrial content and mitochondrial disease.
Friedreich ataxia is a neurodegenerative disease with an autosomal recessive inheritance. In most patients, the disease is caused by the presence of trinucleotide GAA expansions in the first intron of the frataxin gene. These expansions cause the decreased expression of this mitochondrial protein. Many evidences indicate that frataxin deficiency causes the deregulation of cellular iron homeostasis. In this review, we will discuss several hypotheses proposed for frataxin function, their caveats, and how they could provide an explanation for the deregulation of iron homeostasis found in frataxin-deficient cells. We will also focus on the potential mechanisms causing cellular dysfunction in Friedreich Ataxia and on the potential use of the iron chelator deferiprone as a therapeutic agent for this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.