Distributed data stream processing (DSP) is used to analyze information and raise alarms in business-critical scenarios such as financial fraud-detection, clickstream processing, network security, traffic control, or real-time KPI computations. Processing this information efficiently is very challenging because the nature of continuous streaming sources is varying in nature: often the amount of data and processing changes with time of day and day of week and frequently has unexpected spikes. Thus, the result is that most DSP computations are either over-provisioned, introducing increased cost and wasted energy, or are underprovisioned and, either incur in performance degradation or denial-of-service, or have to resort to load shedding.We demonstrate Flood, a scalable, elastic DSP engine that addresses these problems. By using a scalable computing model, MapReduce, and adequately monitoring running computations our system is able to decide, in runtime, if there is a lack or a surplus of resources. Flood then acts autonomically by requesting or releasing computing nodes, without losing tuples or redoing computation, at the same time making sure that latency and throughput requirements are guaranteed.
MapReduce has become a widely used tool for computing complex tasks that process massive amounts of data in large clusters. Support for MapReduce tasks in cloud environments has been provided but it is left to users to make best guesses on the number of nodes needed for a task to complete within acceptable time. Moreover, the time a task will take to complete is often unknown beforehand. Previous research addressed this problem by establishing time constraints for query execution and, when needed, reduce the accuracy of queries using result approximation and/or sampling. However, in many situations reduced accuracy is not tolerable. In this paper we present FloodDQ, a MapReduce system that implements deadline queries-queries that must finish before a deadline, never discarding data or reducing accuracy. FloodDQ produces timely, accurate results by adaptively increasing or decreasing computing power, at runtime, towards completing execution within the specified deadline. In FloodDQ, users only specify a deadline and the input data. The system monitors the progress of the task and extrapolates whether it will complete on time. If the task is deemed to complete after the specified time, the system requests more nodes from an IaaS Cloud provider, and adds them to the computation. On the other hand, if the task is deemed to complete before the specified time the system quiesces and releases surplus nodes, cutting costs to a minimum. This paper describes FloodDQ's architecture for supporting deadline queries and presents experimental results where the system always meets the deadline in spite of changes to the number of nodes, size of data or existence of perturbations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.