Clinical laboratory tests are a critical component of the continuum of care. We evaluate the genetic basis of 35 blood and urine laboratory measurements in the UK Biobank (n=363,228 individuals). We identify 1,857 loci associated with at least one trait, containing 3,374 fine-mapped associations, and additional sets of large-effect (> 0.1 sd) protein-altering, HLA, and copy-number variant associations. Through Mendelian Randomization analysis, we discover 51 causal relationships, including previously known agonistic effects of urate on gout and cystatin C on stroke. Finally, we develop polygenic risk scores for each biomarker and built ‘multi-PRS’ models for diseases using 35 PRSs simultaneously, which improved chronic kidney disease, type 2 diabetes, gout, and alcoholic cirrhosis genetic risk stratification in an independent dataset (FinnGen; n=135,500) relative to single-disease PRSs. Together, our results delineate the genetic basis of biomarkers, their causal influences on diseases, and improve genetic risk stratification for common diseases.
Type 1 diabetes is characterized by the infiltration of inflammatory cells into pancreatic islets of Langerhans, followed by the selective and progressive destruction of insulin-secreting beta cells. Isletinfiltrating leukocytes secrete cytokines such as IL-1 and IFN-␥, which contribute to beta cell death. In vitro evidence suggests that cytokine-induced activation of the transcription factor NF-B is an important component of the signal triggering beta cell apoptosis. To study the in vivo role of NF-B in beta cell death, we generated a transgenic mouse line expressing a degradation-resistant NF-B protein inhibitor (⌬NI B␣), acting specifically in beta cells, in an inducible and reversible manner, by using the tet-on regulation system. In vitro, islets expressing the ⌬NI B␣ protein were resistant to the deleterious effects of IL-1 and IFN-␥, as assessed by reduced NO production and beta-cell apoptosis. This effect was even more striking in vivo, where nearly complete protection against multiple low-dose streptozocin-induced diabetes was observed, with reduced intraislet lymphocytic infiltration. Our results show in vivo that beta cell-specific activation of NF-B is a key event in the progressive loss of beta cells in diabetes. Inhibition of this process could be a potential effective strategy for beta-cell protection.apoptosis ͉ cytokine ͉ diabetes ͉ transgenic mice ͉ insulin
Comparing the gene-expression profiles of sick and healthy individuals can help in understanding disease. Such differential expression analysis is a well-established way to find gene sets whose expression is altered in the disease. Recent approaches to gene-expression analysis go a step further and seek differential co-expression patterns, wherein the level of co-expression of a set of genes differs markedly between disease and control samples. Such patterns can arise from a disease-related change in the regulatory mechanism governing that set of genes, and pinpoint dysfunctional regulatory networks.Here we present DICER, a new method for detecting differentially co-expressed gene sets using a novel probabilistic score for differential correlation. DICER goes beyond standard differential co-expression and detects pairs of modules showing differential co-expression. The expression profiles of genes within each module of the pair are correlated across all samples. The correlation between the two modules, however, differs markedly between the disease and normal samples.We show that DICER outperforms the state of the art in terms of significance and interpretability of the detected gene sets. Moreover, the gene sets discovered by DICER manifest regulation by disease-specific microRNA families. In a case study on Alzheimer's disease, DICER dissected biological processes and protein complexes into functional subunits that are differentially co-expressed, thereby revealing inner structures in disease regulatory networks.
The adaptation of the CRISPR-Cas9 system as a genome editing technique has generated much excitement in recent years owing to its ability to manipulate targeted genes and genomic regions that are complementary to a programmed single guide RNA (sgRNA). However, the efficacy of a specific sgRNA is not uniquely defined by exact sequence homology to the target site, thus unintended off-targets might additionally be cleaved. Current methods for sgRNA design are mainly concerned with predicting off-targets for a given sgRNA using basic sequence features and employ elementary rules for ranking possible sgRNAs. Here, we introduce CRISTA (CRISPR Target Assessment), a novel algorithm within the machine learning framework that determines the propensity of a genomic site to be cleaved by a given sgRNA. We show that the predictions made with CRISTA are more accurate than other available methodologies. We further demonstrate that the occurrence of bulges is not a rare phenomenon and should be accounted for in the prediction process. Beyond predicting cleavage efficiencies, the learning process provides inferences regarding patterns that underlie the mechanism of action of the CRISPR-Cas9 system. We discover that attributes that describe the spatial structure and rigidity of the entire genomic site as well as those surrounding the PAM region are a major component of the prediction capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.