SummaryBackground-House screening should protect people against malaria. We assessed whether two types of house screening, full screening of windows, doors and closing eaves or installing netting ceilings in local houses, could reduce malaria vector house entry and anaemia in children, in an area of seasonal transmission.
SummaryBackgroundLittle information is available about the effect of pneumococcal conjugate vaccines (PCVs) in low-income countries. We measured the effect of these vaccines on invasive pneumococcal disease in The Gambia where the 7-valent vaccine (PCV7) was introduced in August, 2009, followed by the 13-valent vaccine (PCV13) in May, 2011.MethodsWe conducted population-based surveillance for invasive pneumococcal disease in individuals aged 2 months and older who were residents of the Basse Health and Demographic Surveillance System (BHDSS) in the Upper River Region, The Gambia, using standardised criteria to identify and investigate patients. Surveillance was done between May, 2008, and December, 2014. We compared the incidence of invasive pneumococcal disease between baseline (May 12, 2008–May 11, 2010) and after the introduction of PCV13 (Jan 1, 2013–Dec 31, 2014), adjusting for changes in case ascertainment over time.FindingsWe investigated 14 650 patients, in whom we identified 320 cases of invasive pneumococcal disease. Compared with baseline, after the introduction of the PCV programme, the incidence of invasive pneumococcal disease decreased by 55% (95% CI 30–71) in the 2–23 months age group, from 253 to 113 per 100 000 population. This decrease was due to an 82% (95% CI 64–91) reduction in serotypes covered by the PCV13 vaccine. In the 2–4 years age group, the incidence of invasive pneumococcal disease decreased by 56% (95% CI 25–75), from 113 to 49 cases per 100 000, with a 68% (95% CI 39–83) reduction in PCV13 serotypes. The incidence of non-PCV13 serotypes in children aged 2–59 months increased by 47% (−21 to 275) from 28 to 41 per 100 000, with a broad range of serotypes. The incidence of non-pneumococcal bacteraemia varied little over time.InterpretationThe Gambian PCV programme reduced the incidence of invasive pneumococcal disease in children aged 2–59 months by around 55%. Further surveillance is needed to ascertain the maximum effect of the vaccine in the 2–4 years and older age groups, and to monitor serotype replacement. Low-income and middle-income countries that introduce PCV13 can expect substantial reductions in invasive pneumococcal disease.FundingGAVI's Pneumococcal vaccines Accelerated Development and Introduction Plan (PneumoADIP), Bill & Melinda Gates Foundation, and the UK Medical Research Council.
SummaryBackgroundPneumococcal conjugate vaccines (PCVs) are used in many low-income countries but their impact on the incidence of pneumonia is unclear. The Gambia introduced PCV7 in August, 2009, and PCV13 in May, 2011. We aimed to measure the impact of the introduction of these vaccines on pneumonia incidence.MethodsWe did population-based surveillance and case-control studies. The primary endpoint was WHO-defined radiological pneumonia with pulmonary consolidation. Population-based surveillance was for suspected pneumonia in children aged 2–59 months (minimum age 3 months in the case-control study) between May 12, 2008, and Dec 31, 2015. Surveillance for the impact study was limited to the Basse Health and Demographic Surveillance System (BHDSS), whereas surveillance for the case-control study included both the BHDSS and Fuladu West Health and Demographic Surveillance System. Nurses screened all outpatients and inpatients at all health facilities in the surveillance area using standardised criteria for referral to clinicians in Basse and Bansang. These clinicians recorded clinical findings and applied standardised criteria to identify patients with suspected pneumonia. We compared the incidence of pneumonia during the baseline period (May 12, 2008, to May 11, 2010) and the PCV13 period (Jan 1, 2014, to Dec 31, 2015). We also investigated the effectiveness of PCV13 using case-control methods between Sept 12, 2011, and Sept 31, 2014. Controls were aged 90 days or older, and were eligible to have received at least one dose of PCV13; cases had the same eligibility criteria with the addition of having WHO-defined radiological pneumonia.FindingsWe investigated 18 833 children with clinical pneumonia and identified 2156 cases of radiological pneumonia. Among children aged 2–11 months, the incidence of radiological pneumonia fell from 21·0 cases per 1000 person-years in the baseline period to 16·2 cases per 1000 person-years (23% decline, 95% CI 7–36) in 2014–15. In the 12–23 month age group, radiological pneumonia decreased from 15·3 to 10·9 cases per 1000 person-years (29% decline, 12–42). In children aged 2–4 years, incidence fell from 5·2 to 4·1 cases per 1000 person-years (22% decline, 1–39). Incidence of all clinical pneumonia increased by 4% (–1 to 8), but hospitalised cases declined by 8% (3–13). Pneumococcal pneumonia declined from 2·9 to 1·2 cases per 1000 person-years (58% decline, 22–77) in children aged 2–11 months and from 2·6 to 0·7 cases per 1000 person-years (75% decline, 47–88) in children aged 12–23 months. Hypoxic pneumonia fell from 13·1 to 5·7 cases per 1000 person-years (57% decline, 42–67) in children aged 2–11 months and from 6·8 to 1·9 cases per 1000 person-years (72% decline, 58–82) in children aged 12–23 months. In the case-control study, the best estimate of the effectiveness of three doses of PCV13 against radiological pneumonia was an adjusted odds ratio of 0·57 (0·30–1·08) in children aged 3–11 months and vaccine effectiveness increased with greater numbers of doses (p=0·026). The analy...
Abstract. Larviciding to control malaria was assessed in rural areas with extensive seasonal flooding. Larval and adult mosquitoes and malaria incidence were surveyed routinely in four 100-km 2 areas either side of the Gambia River. Baseline data were collected in 2005. Microbial larvicide was applied to all water bodies by hand application with water-dispersible granular formulations and corn granules weekly from May to November in two areas in 2006 and in the other two areas in 2007 in a cross-over design. The intervention was associated with a reduction in habitats with late stage anopheline larvae and an 88% reduction in larval densities ( P < 0.001). The effect of the intervention on mosquito densities was not pronounced and was confounded by the distance of villages to the major breeding sites and year ( P = 0.002). There was no reduction in clinical malaria or anemia. Ground applications of non-residual larvicides with simple equipment are not effective in riverine areas with extensive flooding, where many habitats are poorly demarcated, highly mobile, and inaccessible on foot.
Background The Gambia introduced seven-valent pneumococcal conjugate vaccine (PCV7) in August 2009, followed by PCV13 in May, 2011, using a schedule of three primary doses without a booster dose or catch-up immunisation. We aimed to assess the long-term impact of PCV on disease incidence. MethodsWe did 10 years of population-based surveillance for invasive pneumococcal disease (IPD) and WHO defined radiological pneumonia with consolidation in rural Gambia. The surveillance population included all Basse Health and Demographic Surveillance System residents aged 2 months or older. Nurses screened all outpatients and inpatients at all health facilities using standardised criteria for referral. Clinicians then applied criteria for patient investigation. We defined IPD as a compatible illness with isolation of Streptococcus pneumoniae from a normally sterile site (cerebrospinal fluid, blood, or pleural fluid). We compared disease incidence between baseline (May 12, 2008-May 11, 2010) and post-vaccine years (2016-2017), in children aged 2 months to 14 years, adjusting for changes in case ascertainment over time.Findings We identified 22 728 patients for investigation and detected 342 cases of IPD and 2623 cases of radiological pneumonia. Among children aged 2-59 months, IPD incidence declined from 184 cases per 100 000 person-years to 38 cases per 100 000 person-years, an 80% reduction (95% CI 69-87). Non-pneumococcal bacteraemia incidence did not change significantly over time (incidence rate ratio 0•88; 95% CI, 0•64-1•21). We detected zero cases of vaccine-type IPD in the 2-11 month age group in 2016-17. Incidence of radiological pneumonia decreased by 33% (95% CI 24-40), from 10•5 to 7•0 per 1000 person-years in the 2-59 month age group, while pneumonia hospitalisations declined by 27% (95% CI 22-31). In the 5-14 year age group, IPD incidence declined by 69% (95% CI -28 to 91) and radiological pneumonia by 27% (95% CI -5 to 49).Interpretation Routine introduction of PCV13 substantially reduced the incidence of childhood IPD and pneumonia in rural Gambia, including elimination of vaccine-type IPD in infants. Other low-income countries can expect substantial impact from the introduction of PCV13 using a schedule of three primary doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.