BackgroundSynucleinopathies such as Parkinson’s disease or multiple system atrophy are characterized by Lewy bodies in distinct brain areas. These aggregates are mainly formed by α-synuclein inclusions, a protein crucial for synaptic functions in the healthy brain. Transgenic animal models of synucleinopathies are frequently based on over-expression of human wild type or mutated α-synuclein under the regulatory control of different promoters. A promising model is the Line 61 α-synuclein transgenic mouse that expresses the transgene under control of the Thy-1 promoter.ResultsHere, we show an extended characterization of this mouse model over age. To this end, we analyzed animals for the progression of human and mouse protein expression levels in different brain areas as well as motor and memory deficits. Our results show, that Line 61 mice exhibited an age dependent increase of α-synuclein protein levels in the hippocampus but not the striatum. While murine α-synuclein was also increased with age, it was lower expressed in Line 61 mice than in non-transgenic littermates. At the age of 9 months animals exhibited increased neuroinflammation. Furthermore, we found that Line 61 mice showed severe motor deficits as early as 1 month of age as assessed by the wire hanging and nest building tests. At later ages, initial motor deficits were validated with the RotaRod, pasta gnawing and beam walk tests. At 8 months of age animals exhibited emotional memory deficits as validated with the contextual fear conditioning test.ConclusionIn summary, our results strengthen and further expand our knowledge about the Line 61 mouse model, emphasizing this mouse model as a valuable in vivo tool to test new compounds directed against synucleinopathies.
BackgroundProgressive accumulation of α-synuclein (α-Syn) protein in different brain regions is a hallmark of synucleinopathic diseases, such as Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy. α-Syn transgenic mouse models have been developed to investigate the effects of α-Syn accumulation on behavioral deficits and neuropathology. However, the onset and progression of pathology in α-Syn transgenic mice have not been fully characterized. For this purpose we investigated the time course of behavioral deficits and neuropathology in PDGF-β human wild type α-Syn transgenic mice (D-Line) between 3 and 12 months of age.ResultsThese mice showed progressive impairment of motor coordination of the limbs that resulted in significant differences compared to non-transgenic littermates at 9 and 12 months of age. Biochemical and immunohistological analyses revealed constantly increasing levels of human α-Syn in different brain areas. Human α-Syn was expressed particularly in somata and neurites of a subset of neocortical and limbic system neurons. Most of these neurons showed immunoreactivity for phosphorylated human α-Syn confined to nuclei and perinuclear cytoplasm. Analyses of the phenotype of α-Syn expressing cells revealed strong expression in dopaminergic olfactory bulb neurons, subsets of GABAergic interneurons and glutamatergic principal cells throughout the telencephalon. We also found human α-Syn expression in immature neurons of both the ventricular zone and the rostral migratory stream, but not in the dentate gyrus.ConclusionThe present study demonstrates that the PDGF-β α-Syn transgenic mouse model presents with early and progressive accumulation of human α-Syn that is accompanied by motor deficits. This information is essential for the design of therapeutical studies of synucleinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.