African trypanosomes cause sleeping sickness in humans, a disease that is typically fatal without chemotherapy. Unfortunately, drug resistance is common and melarsoprol-resistant trypanosomes often display cross-resistance to pentamidine. Although melarsoprol/pentamidine cross-resistance (MPXR) has been an area of intense interest for several decades, our understanding of the underlying mechanisms remains incomplete. Recently, a locus encoding two closely related aquaglyceroporins, AQP2 and AQP3, was linked to MPXR in a high-throughput loss-of-function screen. Here, we show that AQP2 has an unconventional "selectivity filter." AQP2-specific gene knockout generated MPXR trypanosomes but did not affect resistance to a lipophilic arsenical, whereas recombinant AQP2 reversed MPXR in cells lacking native AQP2 and AQP3. AQP2 was also shown to be disrupted in a laboratory-selected MPXR strain. Both AQP2 and AQP3 gained access to the surface plasma membrane in insect life-cycle-stage trypanosomes but, remarkably, AQP2 was specifically restricted to the flagellar pocket in the bloodstream stage. We conclude that the unconventional aquaglyceroporin, AQP2, renders cells sensitive to both melarsoprol and pentamidine and that loss of AQP2 function could explain cases of innate and acquired MPXR.
ObjectivesTrypanosoma brucei drug transporters include the TbAT1/P2 aminopurine transporter and the high-affinity pentamidine transporter (HAPT1), but the genetic identity of HAPT1 is unknown. We recently reported that loss of T. brucei aquaglyceroporin 2 (TbAQP2) caused melarsoprol/pentamidine cross-resistance (MPXR) in these parasites and the current study aims to delineate the mechanism by which this occurs.MethodsThe TbAQP2 loci of isogenic pairs of drug-susceptible and MPXR strains of T. brucei subspecies were sequenced. Drug susceptibility profiles of trypanosome strains were correlated with expression of mutated TbAQP2 alleles. Pentamidine transport was studied in T. brucei subspecies expressing TbAQP2 variants.ResultsAll MPXR strains examined contained TbAQP2 deletions or rearrangements, regardless of whether the strains were originally adapted in vitro or in vivo to arsenicals or to pentamidine. The MPXR strains and AQP2 knockout strains had lost HAPT1 activity. Reintroduction of TbAQP2 in MPXR trypanosomes restored susceptibility to the drugs and reinstated HAPT1 activity, but did not change the activity of TbAT1/P2. Expression of TbAQP2 sensitized Leishmania mexicana promastigotes 40-fold to pentamidine and >1000-fold to melaminophenyl arsenicals and induced a high-affinity pentamidine transport activity indistinguishable from HAPT1 by Km and inhibitor profile. Grafting the TbAQP2 selectivity filter amino acid residues onto a chimeric allele of AQP2 and AQP3 partly restored susceptibility to pentamidine and an arsenical.ConclusionsTbAQP2 mediates high-affinity uptake of pentamidine and melaminophenyl arsenicals in trypanosomes and TbAQP2 encodes the previously reported HAPT1 activity. This finding establishes TbAQP2 as an important drug transporter.
The influence of aging on the mechanisms of liver injury and regeneration was studied in a model of hepatotoxicity induced in 2-, 6-, 12-, 18- and 30-month-old rats by a sublethal dose of thioacetamide (500 mg/kg body weight), a soft nucleophilic and hepatotoxic compound metabolized by the hepatic microsomal FAD monooxygenase system. Samples-blood and hepatocytes-were obtained at 0, 12, 24, 48, 72 and 96 h following thioacetamide intoxication. Parameters of liver injury in serum (NADPH-isocitrate dehydrogenase (ICDH) activity) indicate that the severity of injury was significantly higher in the adult groups (6 and 12 months old) when compared either with the youngest (2 months old) or oldest (18 and 30 months old) groups. Parameters related to biotransformation, such as microsomal FAD monooxygenase, followed mainly the same pattern of age-dependent changes as those observed for injury. The profile of glutathione-S-transferase activity showed an initial induction parallel to liver injury and opposite to the levels of reduced glutathione and protein -SH groups. Enzyme activities and gene expression of the systems involved in the cell endogenous antioxidant defense, such as Mn- and Cu,Zn-superoxide dismutases (SOD), catalase and glutathione peroxidase (GPX) showed significant age-dependent changes that can be summarized as follows: an increase in all enzyme activities and gene expression and a decreased ability to restore the initial activities following 96 h of thioacetamide. We conclude, first, that the gene expression and activity of the enzymes involved in the intracellular antioxidant defense system increased with aging, which can be considered a consequence of the enhanced oxidative state of the cell (decreased in GSH level); and second, that the lower and delayed response in the aged groups significantly influenced the restoration towards normal of GSH and the antioxidant enzyme activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.