Buoyancy driven Slocum Gliders were a vision of Douglas Webb, which Henry Stommel championed in a futuristic vision published in 1989. Slocum Gliders have transitioned from a concept to a technology serving basic research and environmental stewardship. The long duration and low operating costs of Gliders allow them to anchor spatial time series. Large distances, over 600 km, can be covered using a single set of alkaline batteries. Since the initial tests, a wide range of physical and optical sensors have been integrated into the Glider allowing measurements of temperature, salinity, depth averaged currents, surface currents, fluorescence, apparent and inherent optical properties. A command/ control center, entitled Dockserver, has been developed that allows users to fly fleets of gliders simultaneously in multiple places around the world via the Internet. Over the last 2.5 years, Rutgers Gliders have logged 27 056 kilometers, and flown 1357 days at sea. Gliders call into the automated Glider Command Center at the Rutgers campus via satellite phone to provide a status update, download data, and receive new mission commands. The ability to operate Gliders for extended periods of time are making them the central in situ technology for the evolving ocean observatories. Off shore New Jersey Gliders have occupied a cross shelf transect and have documented the annual variability in shelf wide stratification on the Mid-Atlantic Bight and the role of storms in sediment resuspension. The sustained data permits scientists to gather regional data critical to addressing if, and how, the oceans are changing.
Abstract-Autonomous underwater vehicles (AUVs) are indispensable tools for marine scientists to study the world's oceans. Depending on their missions, AUVs are equipped with advanced sensors (sonar, cameras, acoustic communication, bio-sensors), have on-board computers for data analysis (image analysis, data compression), and are capable of on-board decision making (resource planning, swarming). Since AUVs operate solely on battery power, power and energy management is a crucial issue. Missioncritical tradeoff decisions have to be made between energy consumption and sensing, data processing, and communication activities. Mission planning has to consider these tradeoffs when provisioning resources for expected future events, or when dealing with changing environmental conditions such weather, water currents, and seafloor profiles. Effective power and energy management requires knowledge about the actual energy consumption of each active component within the AUV. Effective planning requires simulators that can predict energy consumptions based on expected future events and environmental conditions.In this paper, we discuss the design and implementation of a power measurement infrastructure for the Teledyne Webb research Slocum glider. This infrastructure can be used for online power/energy management or to better understand the time-dependent energy consumption profile of the active glider components during a particular mission. We also discuss the design of a new simulation environment for the Slocum glider which uses the power/energy data obtained by our measurement infrastructure, in addition to seafloor and coastal radar information. We illustrate the effectiveness of the new tools in the context of planning a glider flight across the continental shelf off the coast of New Jersey.
Transoceanic Gliders are Autonomous Underwater Vehicles (AUVs) for which there is a developing and expanding range of applications in open-seas research, technology and underwater clean transport. Mature glider autonomy, operating depth (0–1000 meters) and low energy consumption without a CO2 footprint enable evolutionary access across ocean basins. Pursuant to the first successful transatlantic glider crossing in December 2009, the Challenger Mission has opened the door to long-term, long-distance routine transoceanic AUV missions. These vehicles, which glide through the water column between 0 and 1000 meters depth, are highly sensitive to the ocean current field. Consequently, it is essential to exploit the complex space-time structure of the ocean current field in order to plan a path that optimizes scientific payoff and navigation efficiency. This letter demonstrates the capability of dynamical system theory for achieving this goal by realizing the real-time navigation strategy for the transoceanic AUV named Silbo, which is a Slocum deep-glider (0–1000 m), that crossed the North Atlantic from April 2016 to March 2017. Path planning in real time based on this approach has facilitated an impressive speed up of the AUV to unprecedented velocities resulting in major battery savings on the mission, offering the potential for routine transoceanic long duration missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.