We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630-690 nm), band 5 (1550-1750 nm) and the ratio between bands 1 (450-520 nm) and 4 (760-900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520-600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.
This paper presents a semi-automatic procedure to discriminate seasonally flooded areas in the shallow temporary marshes of Doñana National Park (SW Spain) by using a radiommetrically normalized long time series of Landsat MSS, TM, and ETM+ images . Extensive field campaigns for ground truth data retrieval were carried out simultaneous to Landsat overpasses. Ground truth was used as training and testing areas to check the performance of the method. Simple thresholds on TM and ETM band 5 (1.55-1.75 µm) worked significantly better than other empirical modeling techniques and supervised classification methods to delineate flooded areas at Doñana marshes. A classification tree was applied to band 5 reflectance values to classify flooded versus non-flooded pixels for every scene. Inter-scene cross-validation identified the most accurate threshold on band 5 reflectance ( < 0.186) to classify flooded areas (Kappa = 0.65). A joint TM-MSS acquisition was used to find the MSS band 4 (0.8 a 1.1 µm) threshold. The TM flooded area was identical to the results from MSS 4 band threshold < 0.10 despite spectral and spatial resolution differences. Band slicing was retrospectively applied to the complete time series of MSS and TM images. About 391 flood masks were used to reconstruct historical spatial and temporal patterns of Doñana marshes flooding, including hydroperiod. Hydroperiod historical trends were used as a baseline to understand Doñana's flooding regime, test hydrodynamic models, and give an assessment of relevant management and restoration decisions. The historical trends in the hydroperiod of Doñana marshes show two opposite spatial patterns. While the north-western part of the marsh is increasing its hydroperiod, the southwestern part shows a steady decline. Anomalies in each flooding cycle allowed us to assess recent management decisions and monitor their hydrological effects.
Rice fields are an important habitat for waterbirds. Knowledge of the availability of this habitat is important since the reduction in the area of natural wetlands has converted rice fields into vital refuges. This paper presents a method for mapping habitat availability in rice fields according to different waterbirds' habitat preferences and examining its phenology during the crop cycle. Data from bird censuses carried out in the Doñana rice fields were analysed to determine the habitat preferences of 22 species of waterbird at different stages in the rice production cycle. Discriminant function analysis of seven Landsat images was used to classify paddy field stages. The phenology of habitat availability in rice fields during autumn and winter was examined. Waterfowl and waders preferentially used the 'flooded' and 'mudflats with water' paddy field stages, respectively, and the 'rice growing' and 'dry' stages were rejected by waterbirds. The area of preferred habitats within rice fields increased during autumn; subsequently, the area of the 'flooded' paddy fields decreased in January, whereas that of 'mudflats with water' remained available until March. The automatic classification of paddy field stages with Landsat images allowed habitat availability for different species of waterbirds to be monitored and provides relevant information for understanding behavioural and population responses in waterbirds that use rice fields. After examining the phenology of the availability of habitat and comparing it with dates of arrival and departure of migrant waterbirds, best crop practices could be defined to favour waterbirds (i.e. adjusting harvest, ploughing and flooding dates). Taking into account climatic change and loss of wetlands this method could help in the integration of agriculture and conservation, in particular in areas where there is no remaining natural wetland habitat.
Satellite data offer the opportunity for monitoring the temporal flooding dynamics of seasonal wetlands, a parameter that is essential for the ecosystem services these areas provide. This study introduces an unsupervised approach to estimate the extent of flooded areas in a satellite image relying on the physics of light interaction with water, vegetation and their combination. The approach detects automatically thresholds on the Short-Wave Infrared (SWIR) band and on a Modified-Normalized Difference Vegetation Index (MNDVI), derived from radiometrically-corrected Sentinel-2 data. Then, it combines them in a meaningful way based on a knowledge base coming out of an iterative trial and error process. Classes of interest concern water and non-water areas. The water class is comprised of the open-water and water-vegetation subclasses. In parallel, a supervised approach is implemented mainly for performance comparison reasons. The latter approach performs a random forest classification on a set of bands and indices extracted from Sentinel-2 data. The approaches are able to discriminate the water class in different types of wetlands (marshland, rice-paddies and temporary ponds) existing in the Doñana Biosphere Reserve study area, located in southwest Spain. Both unsupervised and supervised approaches are examined against validation data derived from Landsat satellite inundation time series maps, generated by the local administration and offered as an online service since 1983. Accuracy assessment metrics show that both approaches have similarly high classification performance (e.g., the combined kappa coefficient of the unsupervised and the supervised approach is 0.8827 and 0.9477, and the combined overall accuracy is 97.71% and 98.95, respectively). The unsupervised approach can be used by non-trained personnel with a potential for transferability to sites of, at least, similar characteristics.
Abstract:The use of Pseudoinvariant Areas (PIA) makes it possible to carry out a reasonably robust and automatic radiometric correction for long time series of remote sensing imagery, as shown in previous studies for large data sets of Landsat MSS, TM, and ETM+ imagery. In addition, they can be employed to obtain more coherence among remote sensing data from different sensors. The present work validates the use of PIA for the radiometric correction of pairs of images acquired almost simultaneously (Landsat-7 (ETM+) or Landsat-8 (OLI) and Sentinel-2A (MSI)). Four pairs of images from a region in SW Spain, corresponding to four different dates, together with field spectroradiometry measurements collected at the time of satellite overpass were used to evaluate a PIA-based radiometric correction. The results show a high coherence between sensors (r 2 = 0.964) and excellent correlations to in-situ data for the MiraMon implementation (r 2 > 0.9). Other methodological alternatives, ATCOR3 (ETM+, OLI, MSI), SAC-QGIS (ETM+, OLI, MSI), 6S-LEDAPS (ETM+), 6S-LaSRC (OLI), and Sen2Cor-SNAP (MSI), were also evaluated. Almost all of them, except for SAC-QGIS, provided similar results to the proposed PIA-based approach. Moreover, as the PIA-based approach can be applied to almost any image (even to images lacking of extra atmospheric information), it can also be used to solve the robust integration of data from new platforms, such as Landsat-8 or Sentinel-2, to enrich global data acquired since 1972 in the Landsat program. It thus contributes to the program's continuity, a goal of great interest for the environmental, scientific, and technical community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.