Firmly nonexpansive mappings play an important role in metric fixed point theory and optimization due to their correspondence with maximal monotone operators. In this paper we do a thorough study of fixed point theory and the asymptotic behaviour of Picard iterates of these mappings in different classes of geodesic spaces, such as (uniformly convex) W -hyperbolic spaces, Busemann spaces and CAT(0) spaces. Furthermore, we apply methods of proof mining to obtain effective rates of asymptotic regularity for the Picard iterations.MSC: Primary: 47H09, 47H10, 53C22; Secondary: 03F10, 47H05, 90C25, 52A41.
In this paper we provide a unified treatment of some convex minimization problems, which allows for a better understanding and, in some cases, improvement of results in this direction proved recently in spaces of curvature bounded above. For this purpose, we analyze the asymptotic behavior of compositions of finitely many firmly nonexpansive mappings in the setting of p-uniformly convex geodesic spaces focusing on asymptotic regularity and convergence results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.