SCUBA-2 is an innovative 10000 pixel bolometer camera operating at submillimetre wavelengths on the James Clerk Maxwell Telescope (JCMT). The camera has the capability to carry out wide-field surveys to unprecedented depths, addressing key questions relating to the origins of galaxies, stars and planets. With two imaging arrays working simultaneously in the atmospheric windows at 450 and 850 µm, the vast increase in pixel count means that SCUBA-2 maps the sky 100-150 times faster than the previous SCUBA instrument. In this paper we present an overview of the instrument, discuss the physical characteristics of the superconducting detector arrays, outline the observing modes and data acquisition, and present the early performance figures on the telescope. We also showcase the capabilities of the instrument via some early examples of the science SCUBA-2 has already undertaken. In February 2012, SCUBA-2 began a series of unique legacy surveys for the JCMT community. These surveys will take 2.5 years and the results are already providing complementary data to the shorter wavelength, shallower, larger-area surveys from Herschel. The SCUBA-2 surveys will also provide a wealth of information for further study with new facilities such as ALMA, and future telescopes such as CCAT and SPICA.
ULTRACAM is a portable, high-speed imaging photometer designed to study faint astronomical objects at high temporal resolutions. ULTRACAM employs two dichroic beamsplitters and three frame-transfer CCD cameras to provide three-colour optical imaging at frame rates of up to 500 Hz. The instrument has been mounted on both the 4.2-m William Herschel Telescope on La Palma and the 8.2-m Very Large Telescope in Chile, and has been used to study white dwarfs, brown dwarfs, pulsars, black hole/neutron star X-ray binaries, gamma-ray bursts, cataclysmic variables, eclipsing binary stars, extrasolar planets, flare stars, ultracompact binaries, active galactic nuclei, asteroseismology and occultations by Solar System objects (Titan, Pluto and Kuiper Belt objects). In this paper we describe the scientific motivation behind ULTRACAM, present an outline of its design and report on its measured performance.
Adaptive optics provides real time correction of wavefront disturbances on ground based telescopes. Optimizing control and performance is a key issue for ever more demanding instruments on ever larger telescopes affected not only by atmospheric turbulence, but also by vibrations, windshake and tracking errors. Linear Quadratic Gaussian control achieves optimal correction when provided with a temporal model of the disturbance. We present in this paper the first on-sky results of a Kalman filter based LQG control with vibration mitigation on the CANARY instrument at the Nasmyth platform of the 4.2-m William Herschel Telescope. The results demonstrate a clear improvement of performance for full LQG compared with standard integrator control, and assess the additional improvement brought by vibration filtering with a tip-tilt model identified from on-sky data, thus validating the strategy retained on the instrument SPHERE at the VLT.
ULTRASPEC is a high-speed imaging photometer mounted permanently at one of the Nasmyth focii of the 2.4-m Thai National Telescope (TNT) on Doi Inthanon, Thailand's highest mountain. ULTRASPEC employs a 1024×1024 pixel frame-transfer, electron-multiplying CCD (EMCCD) in conjunction with re-imaging optics to image a field of 7.7'×7.7' at (windowed) frame rates of up to ∼200 Hz. The EMCCD has two outputs -a normal output that provides a readout noise of 2.3 e − and an avalanche output that can provide essentially zero readout noise. A six-position filter wheel enables narrow-band and broad-band imaging over the wavelength range 330-1000 nm. The instrument saw first light on the TNT in November 2013 and will be used to study rapid variability in the Universe. In this paper we describe the scientific motivation behind ULTRASPEC, present an outline of its design and report on its measured performance on the TNT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.