Identifying the presence of axillary node and internal mammary node metastases in patients with invasive breast cancer is critical for determining prognosis and for deciding on appropriate treatment. Sentinel lymph node biopsy (SLNB) is the definitive method to exclude axillary metastases. Patients with positive SLNB results generally undergo axillary lymph node dissection (ALND). The benefit of preoperative identification of axillary metastases is that it allows the surgeon to proceed directly to ALND and to avoid an unnecessary SLNB and the need for a second surgical procedure involving the axillary nodes. Knowledge of the important anatomic landmarks of the axilla is important in finding and accurately reporting suspicious lymph nodes. The pathologic features of nodal metastases illuminate the imaging appearances of these nodes, as depicted with all modalities. Ultrasonography (US) is the primary imaging modality for evaluating axillary nodes. Morphologic criteria, such as cortical thickening, hilar effacement, and nonhilar cortical blood flow, are more important than size criteria in the identification of metastases. US-guided lymph node sampling, especially with core biopsy, is invaluable in confirming the presence of a metastasis in a suspicious node. Core biopsy has been shown to be equal in safety to fine needle aspiration and has a significantly lower false-negative rate. Magnetic resonance imaging is also useful, with the added benefit of providing a global view of both axillae. Computed tomography and radionuclide imaging play a lesser role in imaging the axilla. Preoperative image-based identification and sampling of abnormal lymph nodes that have a high positive predictive value for metastases is an extremely important component in the management of patients with invasive breast cancer.
In the presence of an underlying disease associated with these findings, the subsequent finding of a malignancy is less likely. In addition, neglect of these findings may result in delayed diagnosis of cancer.
Because of the limited specificity of diagnostic imaging, many breast lesions referred for biopsy turn out to be benign. The objective of this study was to evaluate whether diffusion tensor MRI (DTI) parametric maps can be used to safely avoid biopsy of breast lesions. Individuals referred for breast biopsy based on mammogram (MG), ultrasound (US), and/or contrast enhanced (CE)-MRI were recruited. Scans consisting of T2-weighted and DTI sequences were performed. Multiple DTI-derived parametric color maps were evaluated semi-quantitatively to characterize lesions as “definitely benign,” “not definitely benign,” or “suspicious.” All patients subsequently underwent biopsy. In this moderately-sized prospective study, 21 out of 47 pathologically proven benign lesions were characterized by both readers as “definitely benign,” which would have precluded the need for biopsy. Biopsy was recommended for 11 out of 13 cancers that were characterized as “suspicious.” In the remaining two cancers and 26 of 47 benign lesions, the scans were characterized as “not definitely benign” and hence required biopsy. The main causes for “not definitely benign” scans were small lesion sizes and noise. The results suggest that in appropriately selected patients, DTI may be used to safely reduce the number of unnecessary breast biopsies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.