Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.Many common human diseases and traits are known to cluster in families and are believed to be influenced by several genetic and environmental factors, but until recently the identification of genetic variants contributing to these 'complex diseases' has been slow and arduous 1 . Genome-wide association studies (GWAS), in which several hundred thousand to more than a million single nucleotide polymorphisms (SNPs) are assayed in thousands of individuals, represent a powerful new tool for investigating the genetic architecture of complex diseases 1, 2. In the past few years, these studies have identified hundreds of genetic variants associated with such conditions and have provided valuable insights into the complexities of their genetic architecture3 , 4.The genome-wide association (GWA) method represents an important advance compared to 'candidate gene' studies, in which sample sizes are generally smaller and the variants assayed are limited to a selected few, often on the basis of imperfect understanding of biological pathways and often yielding associations that are difficult to replicate 5,6. GWAS are also an important step beyond family-based linkage studies, in which inheritance patterns are related to several hundreds to thousands of genomic markers. Despite many clear successes in singlegene 'Mendelian' disorders7 , 8, the limited success of linkage studies in complex diseases has been attributed to their low power and resolution for variants of modest effect 9-11 .The underlying rationale for GWAS is the 'common disease, common variant' hypothesis, positing that common diseases are attributable in part to allelic variants present in more than 1-5% of the population12 -14. They have been facilitated by the development of commercial 'SNP chips' or arrays that capture most, although not all, common variation in the genome. Although the allelic architecture of some conditions, notably age-related macular degeneration, for the most part reflects the contributions of several variants of large effect (defined loosely here as those increasing disease risk by twofold or more), most common variants individually or in combination confer relatively small increments in risk (1.1-1.5-fold) and explain only a small proportion of heritability-the portion of phenotypic variance in a population attributable to additive ...
Chronic infection with hepatitis C virus (HCV) affects 170 million people worldwide and is the leading cause of cirrhosis in North America. Although the recommended treatment for chronic infection involves a 48-week course of peginterferon-alpha-2b (PegIFN-alpha-2b) or -alpha-2a (PegIFN-alpha-2a) combined with ribavirin (RBV), it is well known that many patients will not be cured by treatment, and that patients of European ancestry have a significantly higher probability of being cured than patients of African ancestry. In addition to limited efficacy, treatment is often poorly tolerated because of side effects that prevent some patients from completing therapy. For these reasons, identification of the determinants of response to treatment is a high priority. Here we report that a genetic polymorphism near the IL28B gene, encoding interferon-lambda-3 (IFN-lambda-3), is associated with an approximately twofold change in response to treatment, both among patients of European ancestry (P = 1.06 x 10(-25)) and African-Americans (P = 2.06 x 10(-3)). Because the genotype leading to better response is in substantially greater frequency in European than African populations, this genetic polymorphism also explains approximately half of the difference in response rates between African-Americans and patients of European ancestry.
The past year has witnessed substantial advances in understanding the genetic basis of many common phenotypes of biomedical importance. These advances have been the result of systematic, well-powered, genome-wide surveys exploring the relationships between common sequence variation and disease predisposition. This approach has revealed over 50 disease-susceptibility loci and has provided insights into the allelic architecture of multifactorial traits. At the same time, much has been learned about the successful prosecution of association studies on such a scale. This Review highlights the knowledge gained, defines areas of emerging consensus, and describes the challenges that remain as researchers seek to obtain more complete descriptions of the susceptibility architecture of biomedical traits of interest and to translate the information gathered into improvements in clinical management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.