Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.Many common human diseases and traits are known to cluster in families and are believed to be influenced by several genetic and environmental factors, but until recently the identification of genetic variants contributing to these 'complex diseases' has been slow and arduous 1 . Genome-wide association studies (GWAS), in which several hundred thousand to more than a million single nucleotide polymorphisms (SNPs) are assayed in thousands of individuals, represent a powerful new tool for investigating the genetic architecture of complex diseases 1, 2. In the past few years, these studies have identified hundreds of genetic variants associated with such conditions and have provided valuable insights into the complexities of their genetic architecture3 , 4.The genome-wide association (GWA) method represents an important advance compared to 'candidate gene' studies, in which sample sizes are generally smaller and the variants assayed are limited to a selected few, often on the basis of imperfect understanding of biological pathways and often yielding associations that are difficult to replicate 5,6. GWAS are also an important step beyond family-based linkage studies, in which inheritance patterns are related to several hundreds to thousands of genomic markers. Despite many clear successes in singlegene 'Mendelian' disorders7 , 8, the limited success of linkage studies in complex diseases has been attributed to their low power and resolution for variants of modest effect 9-11 .The underlying rationale for GWAS is the 'common disease, common variant' hypothesis, positing that common diseases are attributable in part to allelic variants present in more than 1-5% of the population12 -14. They have been facilitated by the development of commercial 'SNP chips' or arrays that capture most, although not all, common variation in the genome. Although the allelic architecture of some conditions, notably age-related macular degeneration, for the most part reflects the contributions of several variants of large effect (defined loosely here as those increasing disease risk by twofold or more), most common variants individually or in combination confer relatively small increments in risk (1.1-1.5-fold) and explain only a small proportion of heritability-the portion of phenotypic variance in a population attributable to additive ...
Genome-wide association studies have identified thousands of loci for common diseases, but, for the majority of these, the mechanisms underlying disease susceptibility remain unknown. Most associated variants are not correlated with protein-coding changes, suggesting that polymorphisms in regulatory regions probably contribute to many disease phenotypes. Here we describe the Genotype-Tissue Expression (GTEx) project, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues
A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus.
Understanding the functional consequences of genetic variation, and how it affects complex human disease and quantitative traits, remains a critical challenge for biomedicine. We present an analysis of RNA sequencing data from 1641 samples across 43 tissues from 175 individuals, generated as part of the pilot phase of the Genotype-Tissue Expression (GTEx) project. We describe the landscape of gene expression across tissues, catalog thousands of tissue-specific and shared regulatory expression quantitative trait loci (eQTL) variants, describe complex network relationships, and identify signals from genome-wide association studies explained by eQTLs. These findings provide a systematic understanding of the cellular and biological consequences of human genetic variation and of the heterogeneity of such effects among a diverse set of human tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.