One-dimensional (1D) arrays of small-capacitance Josephson junctions demonstrate a sharp transition, from Josephson-like behavior to the Coulomb blockade of Cooper-pair tunneling, as the effective Josephson coupling between nearest neighbors is tuned with an externally applied magnetic field. Comparing the zero-bias resistance of three arrays with 255, 127, and 63 junctions, we observe a critical behavior where the resistance, extrapolated to T 0, is independent of length at a critical magnetic field. Comparison is made with a theory of this T 0 quantum phase transition, which maps to the 2D classical XY model. [S0031-9007 (98)06542-9] PACS numbers: 73.40.Gk, 73.23.Hk, 74.50. + r 204 0031-9007͞98͞81(1)͞204(4)$15.00
A mode of atomic force microscopy (AFM) is demonstrated where an oscillating AFM cantilever having linear response is driven with two frequencies in the vicinity of a resonance. New frequencies in the response, known as intermodulation products, are generated when the linearity of the cantilever response is perturbed by the nonlinear tip-surface interaction. A rich structure of the intermodulation products is observed as a function of the probe-surface separation, indicating that it is possible to extract much more detailed information about the tip-surface interaction than is possible with the standard amplitude and phase imaging methods.
We study spin transport in a superconducting nanowire using a set of closely spaced magnetic tunnel contacts. We observe a giant enhancement of the spin accumulation of up to 5 orders of magnitude on transition into the superconducting state, consistent with the expected changes in the density of states. The spin relaxation length decreases by an order of magnitude from its value in the normal state. These measurements, combined with our theoretical model, allow us to distinguish the individual spin-flip mechanisms present in the transport channel. Our conclusion is that magnetic impurities rather than spin-orbit coupling dominate spin-flip scattering in the superconducting state.
Atomic force microscope (AFM) users often calibrate the spring constants of cantilevers using functionality built into individual instruments. This is performed without reference to a global standard, which hinders robust comparison of force measurements reported by different laboratories. In this article, we describe a virtual instrument (an internet-based initiative) whereby users from all laboratories can instantly and quantitatively compare their calibration measurements to those of others -standardising AFM force measurements -and simultaneously enabling noninvasive calibration of AFM cantilevers of any geometry. This global calibration initiative requires no additional instrumentation or data processing on the part of the user. It utilises a single website where users upload currently available data. A proof-of-principle demonstration of this initiative is presented using measured data from five independent laboratories across three countries, which also allows for an assessment of current calibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.