Valproic acid (VPA) is a fatty acid antiepileptic with demonstrated antimanic properties, but the molecular mechanism or mechanisms underlying its therapeutic efficacy remain to be elucidated. In view of the increasing evidence demonstrating effects of the first‐line antimanic drug, lithium, on protein kinase C (PKC), we investigated the effects of VPA on various aspects of this enzyme. Chronic exposure (6–7 days) of rat C6 glioma cells to “therapeutic” concentrations (0.6 mM) of VPA resulted in decreased PKC activity in both membrane and cytosolic fractions and increased the cytosol/membrane ratio of PKC activity. Western blot analysis revealed isozyme‐selective decreases in the levels of PKC α and ε (but not δ or ζ) in both the membrane and cytosolic fractions after chronic VPA exposure; VPA added to reaction mixtures did not alter PKC activity or 3H‐phorbol ester binding. Together, these data suggest that chronic VPA indirectly lowers the levels of specific isozymes of PKC in C6 cells. Given the pivotal role of PKC in regulating neuronal signal transduction and modulating intracellular cross‐talk between neurotransmitter systems, the specific decreases in PKC α and ε may play a role in the antimanic effects of VPA.
The anticonvulsant carbamazepine is an effective treatment both for epilepsy and for bipolar affective disorder, but the molecular mechanism(s) underlying its therapeutic effects have not been identified. We have found that carbamazepine exerts significant inhibitory effects on the cyclic AMP (cAMP) generating system. Within the clinical therapeutic range (-~5Oj.tM), carbamazepine inhibited both basal and forskolin-stimulated cAMP production, without having any significant effects on phosphodiesterase activity. Carbamazepine also exerted its inhibitory effects on the cAMP generating system in pertussis toxin-treated cells, suggesting that the action of carbamazepine was likely mediated through an inhibitory guanine nucleotide binding protein-independent mechanism. A forskolin affinity purification column was used to purify adenylyl cyclases from rat cerebral cortex, and we found that. carbamazepine inhibited both basal and forskolin-stimulated activity of purified adenylyl cyclase. We also investigated the effects of carbamazepine on the levels of the transcription factor, cAMP response element binding protein in the phosphorylated (active) state, and found that carbamazepine significantly inhibited forskolin-induced phosphorylation of the cAMP response element binding protein. The data indicate that carbamazepine inhibits adenylyl cyclase activity as well as the downstream effects of activation of adenylyl cyclase. Key Words: Carbamazepine-Adenylyl cyclase-Seizure-Mania-Anticonvulsant--Cyclic AMP response element binding protein.
An examination was made of the effects of ganglioside GM1 (i.m.) on the losses of membrane fatty acids (palmitic, stearic, oleic, linoleic, and arachidonic), the plasma membrane enzyme Na+, K+-ATPase, and the mitochondrial membrane enzyme Mg2+-ATPase, associated with global ischemia 24 hr after permanent unilateral occlusion of the carotid artery in Mongolian gerbils. While there was a significant loss of fatty acids in saline controls, no loss was detected in membranes from GM1-injected gerbils. Rather, we found an increase in membrane fatty acid content, indicative of altered turnover. A 38% loss of Na+, K+-ATPase and a 36% loss of mitochondrial Mg2+-ATPase observed in membranes from saline controls was reduced in membranes from GM1-injected animals to losses of 15% and 8% respectively. These effects are further described by analyses of enzyme kinetics (apparent Vmax and apparent Km). After 1 week of storage, the activities of both membrane ATPases from saline controls decreased substantially more than from GM1-injected animals, suggesting that the GM1 membranes were better "preserved." Since there was a minimal loss in protein content after 24 hr of ischemia, these results indicate that systemically injected GM1 may protect structure and function of plama membranes during the acute phases of ischemic injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.