The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations.
Significant resources around the world have been invested in neuroimaging studies of brain function and disease. Easier access to this large body of work should have profound impact on research in cognitive neuroscience and psychiatry, leading to advances in the diagnosis and treatment of psychiatric and neurological disease. A trend toward increased sharing of neuroimaging data has emerged in recent years. Nevertheless, a number of barriers continue to impede momentum. Many researchers and institutions remain uncertain about how to share data or lack the tools and expertise to participate in data sharing. The use of electronic data capture (EDC) methods for neuroimaging greatly simplifies the task of data collection and has the potential to help standardize many aspects of data sharing. We review here the motivations for sharing neuroimaging data, the current data sharing landscape, and the sociological or technical barriers that still need to be addressed. The INCF Task Force on Neuroimaging Datasharing, in conjunction with several collaborative groups around the world, has started work on several tools to ease and eventually automate the practice of data sharing. It is hoped that such tools will allow researchers to easily share raw, processed, and derived neuroimaging data, with appropriate metadata and provenance records, and will improve the reproducibility of neuroimaging studies. By providing seamless integration of data sharing and analysis tools within a commodity research environment, the Task Force seeks to identify and minimize barriers to data sharing in the field of neuroimaging.
This report provides practical recommendations for the design and execution of Multi-Center functional Magnetic Resonance Imaging (MC-fMRI) studies based on the collective experience of the Function Biomedical Informatics Research Network (FBIRN). The paper was inspired by many requests from the fMRI community to FBIRN group members for advice on how to conduct MC-fMRI studies. The introduction briefly discusses the advantages and complexities of MC-fMRI studies. Prerequisites for MC-fMRI studies are addressed before delving into the practical aspects of carefully and efficiently setting up a MC-fMRI study. Practical multi-site aspects include: (1) establishing and verifying scan parameters including scanner types and magnetic fields, (2) establishing and monitoring of a scanner quality program, (3) developing task paradigms and scan session documentation, (4) establishing clinical and scanner training to ensure consistency over time, (5) developing means for uploading, storing, and monitoring of imaging and other data, (6) the use of a traveling fMRI expert and (7) collectively analyzing imaging data and disseminating results. We conclude that when MC-fMRI studies are organized well with careful attention to unification of hardware, software and procedural aspects, the process can be a highly effective means for accessing a desired participant demographics while accelerating scientific discovery.
Overexpression of the amyloid precursor protein (APP)gene on chromosome 21 in Down syndrome (DS) has been linked to increased brain amyloid levels and early-onset Alzheimer’s disease (AD). An elderly man with phenotypic DS and partial trisomy of chromosome 21 (PT21) lacked triplication of APP affording an opportunity to study the role of this gene in the pathogenesis of dementia. Multidisciplinary studies between ages 66–72 years comprised neuropsychological testing, independent neurological exams, amyloid PET imaging with 11C-Pittsburgh compound-B (PiB), plasma Amyloid-β(Aβ)measurements and a brain autopsy examination. The clinical phenotype was typical for DS and his intellectual disability was mild in severity. His serial neuropsychological test scores showed less than a 3% decline as compared to high functioning individuals with DS who developed dementia wherein the scores declined 17–28% per year. No dementia was detected on neurological examinations. On both PiB-PET scans, the patient with PT21 had lower PiB standard uptake values than controls with typical DS or sporadic AD. Plasma Aβ42 was lower than values for demented or non -demented adults with DS. Neuropathological findings showed only a single neuritic plaque and neurofibrillary degeneration consistent with normal aging but not AD. Taken together the findings in this rare patient with PT21 confirm the obligatory role of APPin the clinical, biochemical and neuropathological findings of AD in DS.
Position emission tomography using 6-FDOPA as a marker of presynaptic dopaminergic activity was used to investigate the role of the dopamine system in stuttering. Three patients with moderate to severe developmental stuttering were compared with six normal controls. Stuttering subjects showed significantly higher 6-FDOPA uptake than normal controls in medial prefrontal cortex, deep orbital cortex, insular cortex, extended amygdala, auditory cortex and caudate tail. Elevated 6-FDOPA uptake in ventral limbic cortical and subcortical regions is compatible with the hypothesis that stuttering is associated with an overactive presynaptic dopamine system in brain regions that modulate verbalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.