Three strikingly different alternative male mating morphs (aggressive “Independents”, semi-cooperative “Satellites” and female mimic “Faeders”) coexist as a balanced polymorphism in the ruff, Philomachus pugnax, a lek-breeding wading bird1,2,3. Major differences in body size, ornamentation, and aggressive and mating behaviour are inherited as an autosomal polymorphism4,5. We show that development into Satellites and Faeders is determined by a supergene6,7,8 consisting of divergent alternative, dominant, non-recombining haplotypes of an inversion on chromosome 11, which contains 125 predicted genes. Independents are homozygous for the ancestral sequence. One breakpoint of the inversion disrupts the essential Centromere protein N (CENP-N) gene, and pedigree analysis confirms lethality of inversion homozygotes. We describe novel behavioural, testes size, and steroid metabolic differences among morphs, and identify polymorphic genes within the inversion that are likely to contribute to the differences among morphs in reproductive traits.
We examine the potential selective importance of predation danger on the evolution of migration strategies of arctic‐breeding calidrid sandpipers. Adult calidrids truncate parental care for reasons not obviously related to levels of food abundance on the breeding areas or at migratory stopover sites, suggesting that a different trade‐off occurs between providing additional care and adult survivorship. The southward migrations of adult western sandpipers precede those of migratory peregrine falcons by almost a month. By moving early and quickly, adults remain ahead of migrant falcons all the way to their non‐breeding areas, where they rapidly moult flight feathers. They complete the moult just as falcons arrive in late September–October. By migrating early, they avoid exposure to falcons when they are unusually vulnerable, due to the requirements for fuelling migratory flight and of wing feather moult. Juvenile western sandpipers migrate south just as falcon numbers start to increase, but do not moult flight feathers in their first winter. Pacific dunlin use an alternative strategy of remaining and moulting in Alaska after falcons depart, and migrating to their overwintering sites after migrants have passed. East of the Rocky Mountains, the southbound migration of falcons begins 4–6 weeks later. Southbound semipalmated sandpipers make extended migratory stopovers, but their lengths of stay shorten prior to falcon migration to the sites in September. Predation danger also may affect the evolution of migration routes. Southbound western sandpipers fly directly from Alaska to southern British Columbia, in contrast to the multi‐stage journey northward along the Alaska panhandle. We estimate that a direct flight would be more economical on northward migration, but may be avoided because it would expose sandpipers to higher mass‐dependent predation danger from migratory falcons, which travel north with sandpipers. By contrast, few raptors are present in Alaska during preparation for the southward flight. A temporal and spatial window of safety may also permit semipalmated sandpipers to become extremely vulnerable while preparing for trans‐Atlantic southward flights. Danger management may account for the these previously enigmatic features of calidrid migration strategies, and aspects of those of other birds.
Telomeres are highly conserved regions of DNA that protect the ends of linear chromosomes. The loss of telomeres can signal an irreversible change to a cell's state, including cellular senescence. Senescent cells no longer divide and can damage nearby healthy cells, thus potentially placing them at the crossroads of cancer and ageing. While the epidemiology, cellular and molecular biology of telomeres are well studied, a newer field exploring telomere biology in the context of ecology and evolution is just emerging. With work to date focusing on how telomere shortening relates to individual mortality, less is known about how telomeres relate to ageing rates across species. Here, we investigated telomere length in cross-sectional samples from 19 bird species to determine how rates of telomere loss relate to interspecific variation in maximum lifespan. We found that bird species with longer lifespans lose fewer telomeric repeats each year compared with species with shorter lifespans. In addition, phylogenetic analysis revealed that the rate of telomere loss is evolutionarily conserved within bird families. This suggests that the physiological causes of telomere shortening, or the ability to maintain telomeres, are features that may be responsible for, or co-evolved with, different lifespans observed across species.This article is part of the theme issue ‘Understanding diversity in telomere dynamics'.
The presence of top predators can affect prey behaviour, morphology and life history, and thereby can produce indirect population consequences greater and further reaching than direct depredation would have alone. Raptor species in the Americas are recovering since restrictions on the use of dichlorodiphenyltrichloroethane (DDT) and the implementation of conservation measures, in effect constituting a hemisphere-wide predator-reintroduction experiment, and profound effects on populations of their prey are to be expected. Here, we document changes in the behaviour of western sandpipers (Calidris mauri ) at migratory stopover sites over two decades. Since 1985, migratory body mass and stopover durations of western sandpipers have fallen steadily at some stopovers in the Strait of Georgia, British Columbia. Comparisons between years, sites and seasons strongly implicate increasing danger from the recovery of peregrine falcons (Falco peregrinus) as a causal factor. A decade-long ongoing steep decline in sandpiper numbers censused on our study site is explained entirely by the shortening stopover duration, rather than fewer individuals using the site. Such behavioural changes are probably general among migratory shorebird species, and may be contributing to the widespread census declines reported in North America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.