X-ray diffraction was employed to study the evolution of the charge density wave (CDW) in Cu_{x}TiSe_{2} as a function of copper intercalation in order to clarify the relationship between the CDW and superconductivity. The results show a CDW incommensuration arising at an intercalation value coincident with the onset of superconductivity at around x=0.055(5). Additionally, it was found that the charge density wave persists to higher intercalant concentrations than previously assumed, demonstrating that the CDW does not terminate inside the superconducting dome. A charge density wave peak was observed in samples up to x=0.091(6), the highest copper concentration examined in this study. The phase diagram established in this work suggests that charge density wave incommensuration may play a role in the formation of the superconducting state.
MXenes
comprise a class of 2D materials with attractive properties
for use in electronically functional composites. However, a fundamental
understanding of these properties at the scale of individual flakes
is necessary. Here, we use resonance Raman scattering of Ti3C2T
x
MXenes to study their
vibrational modes as a function of the flake thickness and surface
terminations. Enhancement enables a precise comparison of the peak
shifts in MILD/HF-method etching environments that produce different
functional group densities on the MXene layer surfaces. We find that
the enhanced Raman modes are sensitive to the different electron-withdrawing
character of the surface functional groups.
Unambiguous determination of the optical dynamics in MXenes is necessary for their reliable development into applications such as EMI shielding, energy storage, and laser systems. Here, simultaneous ultrafast transmission and reflection (SUTR) is used to determine the temporal change in refractory index (n) and extinction coefficient (k) of Ti 3 C 2 T x from 450 to 1300 nm which is dominated by intraflake mechanisms. We assign the dynamics for wavelengths below 600 nm with interband transitions, while those at 800 nm are assigned to a plasmon resonance. The response from 1000 to 1300 nm shows changes in index of refraction with no changes in extinction coefficient, consistent with free carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.