Key points As reactivation of the fetal gene program has been implicated in pathological remodelling during heart failure (HF), we examined whether cardiomyocyte subcellular structure and function revert to an immature phenotype during this disease. Surface and internal membrane structures appeared gradually during development, and returned to a juvenile state during HF. Similarly, dyadic junctions between the cell membrane and sarcoplasmic reticulum were progressively ‘packed’ with L‐type Ca2+ channels and ryanodine receptors during development, and ‘unpacked’ during HF. Despite similarities in subcellular structure, dyads were observed to be functional from early developmental stages, but exhibited an impaired ability to release Ca2+ in failing cardiomyocytes. Thus, while immature and failing cardiomyocytes share similarities in subcellular structure, these do not fully account for the marked impairment of Ca2+ homeostasis observed in HF. Abstract Reactivation of the fetal gene programme has been implicated as a driver of pathological cardiac remodelling. Here we examined whether pathological remodelling of cardiomyocyte substructure and function during heart failure (HF) reflects a reversion to an immature phenotype. Using scanning electron microscopy, we observed that Z‐grooves and t‐tubule openings at the cell surface appeared gradually during cardiac development, and disappeared during HF. Confocal and super‐resolution imaging within the cell interior revealed similar structural parallels; disorganization of t‐tubules in failing cells was strikingly reminiscent of the late stages of postnatal development, with fewer transverse elements and a high proportion of longitudinal tubules. Ryanodine receptors (RyRs) were observed to be laid down in advance of developing t‐tubules and similarly ‘orphaned’ in HF, although RyR distribution along Z‐lines was relatively sparse. Indeed, nanoscale imaging revealed coordinated packing of L‐type Ca2+ channels and RyRs into dyadic junctions during development, and orderly unpacking during HF. These findings support a ‘last in, first out’ paradigm, as the latest stages of dyadic structural development are reversed during disease. Paired imaging of t‐tubules and Ca2+ showed that the disorganized arrangement of dyads in immature and failing cells promoted desynchronized and slowed Ca2+ release in these two states. However, while developing cells exhibited efficient triggering of Ca2+ release at newly formed dyads, dyadic function was impaired in failing cells despite similar organization of Ca2+ handling proteins. Thus, pathologically deficient Ca2+ homeostasis during HF is only partly linked to the re‐emergence of immature subcellular structure, and additionally reflects lost dyadic functionality.
Rationale: Hypokalemia occurs in up to 20% of hospitalized patients and is associated with increased incidence of ventricular and atrial fibrillation. It is unclear whether these differing types of arrhythmia result from direct and perhaps distinct effects of hypokalemia on cardiomyocytes. Objective: To investigate proarrhythmic mechanisms of hypokalemia in ventricular and atrial myocytes. Methods and Results: Experiments were performed in isolated rat myocytes exposed to simulated hypokalemia conditions (reduction of extracellular [K + ] from 5.0 to 2.7 mmol/L) and supported by mathematical modeling studies. Ventricular cells subjected to hypokalemia exhibited Ca 2+ overload and increased generation of both spontaneous Ca 2+ waves and delayed afterdepolarizations. However, similar Ca 2+ -dependent spontaneous activity during hypokalemia was only observed in a minority of atrial cells that were observed to contain t-tubules. This effect was attributed to close functional pairing of the Na + -K + ATPase and Na + -Ca 2+ exchanger proteins within these structures, as reduction in Na + pump activity locally inhibited Ca 2+ extrusion. Ventricular myocytes and tubulated atrial myocytes additionally exhibited early afterdepolarizations during hypokalemia, associated with Ca 2+ overload. However, early afterdepolarizations also occurred in untubulated atrial cells, despite Ca 2+ quiescence. These phase-3 early afterdepolarizations were rather linked to reactivation of nonequilibrium Na + current, as they were rapidly blocked by tetrodotoxin. Na + current-driven early afterdepolarizations in untubulated atrial cells were enabled by membrane hyperpolarization during hypokalemia and short action potential configurations. Brief action potentials were in turn maintained by ultra-rapid K + current (I Kur ); a current which was found to be absent in tubulated atrial myocytes and ventricular myocytes. Conclusions: Distinct mechanisms underlie hypokalemia-induced arrhythmia in the ventricle and atrium but also vary between atrial myocytes depending on subcellular structure and electrophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.