Sepsis, a systemic inflammatory response to infection, commonly progresses to acute lung injury (ALI), an inflammatory lung disease with high morbidity. We postulated that sepsis-associated ALI is initiated by degradation of the pulmonary endothelial glycocalyx, leading to neutrophil adherence and inflammation. Using intravital microscopy, we found that endotoxemia in mice rapidly induced pulmonary microvascular glycocalyx degradation via tumor necrosis factor-α (TNF-α)-dependent mechanisms. Glycocalyx degradation involved the specific loss of heparan sulfate and coincided with activation of endothelial heparanase, a TNF-α–responsive, heparan sulfate–specific glucuronidase. Glycocalyx degradation increased the availability of endothelial surface adhesion molecules to circulating microspheres and contributed to neutrophil adhesion. Heparanase inhibition prevented endotoxemia-associated glycocalyx loss and neutrophil adhesion and, accordingly, attenuated sepsis-induced ALI and mortality in mice. These findings are potentially relevant to human disease, as sepsis-associated respiratory failure in humans was associated with higher plasma heparan sulfate degradation activity; moreover, heparanase content was higher in human lung biopsies showing diffuse alveolar damage than in normal human lung tissue.
Our prior in vitro studies indicate that sphingosine 1-phosphate (S1P), a phospholipid angiogenic factor, produces endothelial cell barrier enhancement through ligation of endothelial differentiation gene family receptors. We hypothesized that S1P may reduce the vascular leak associated with acute lung injury and found that S1P infusion produced a rapid and significant reduction in lung weight gain (more than 50%) in the isolated perfused murine lung. The effect of S1P was next assessed in a murine model of LPS-mediated microvascular permeability and inflammation with marked increases in parameters of lung injury at both 6 and 24 hours after intratracheal LPS. Each parameter assessed was significantly reduced by intravenous S1P (1 microM final) and in selected experiments by the S1P analogue FTY720 (0.1 mg/kg, intraperitoneally) delivered 1 hour after LPS. S1P produced an approximately 40-50% reduction in LPS-mediated extravasation of Evans blue dye albumin, bronchoalveolar lavage protein content, and lung tissue myeloperoxidase activity (reflecting phagocyte infiltration). Consistent with systemic barrier enhancement, S1P significantly decreased Evans blue dye albumin extravasation and myeloperoxidase content in renal tissues of LPS-treated mice. These studies indicate that S1P significantly decreases pulmonary/renal vascular leakage and inflammation in a murine model of LPS-mediated acute lung injury and may represent a novel therapeutic strategy for vascular barrier dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.