Background The goals of asthma treatment include preventing recurrent exacerbations. Yet there is no consensus about the terminology for describing or defining “exacerbation,” or about how to characterize an episode’s severity. Objective National Institutes of Health (NIH) institutes and other federal agencies convened an expert group to propose how asthma exacerbation should be assessed as a standardized asthma outcome in future asthma clinical research studies. Methods We utilized comprehensive literature reviews and expert opinion to compile a list of asthma exacerbation outcomes, and classified them as either core (required in future studies), supplemental (used according to study aims and standardized), or emerging (requiring validation and standardization). This work was discussed at an NIH-organized workshop in March 2010 and finalized in September 2011. Results No dominant definition of “exacerbation” was found. The most widely used definitions included 3 components, all related to treatment, rather than symptoms: (1) systemic use of corticosteroids, (2) asthma-specific emergency department visits or hospitalization, and (3) use of short-acting β-agonists (SABAs) as quick-relief (sometimes referred to as “rescue” or “reliever”) medications. Conclusions The working group participants propose that the definition of “asthma exacerbation” be “a worsening of asthma requiring the use of systemic corticosteroids to prevent a serious outcome.” As core outcomes, they propose inclusion and separate reporting of several essential variables of an exacerbation. Further, they propose the development of a standardized, component-based definition of “exacerbation” with clear thresholds of severity for each component.
Allergic disease prevalence has significantly increased in recent decades. Primary prevention efforts are being guided by the study of the exposome, or collective environmental exposures beginning during the prenatal period, to identify modifiable factors that impact allergic disease risk. In this review, we explore the evidence supporting a relationship between key components of the external exposome in the prenatal and early-life periods and their impact on atopy development, focused on microbial, allergen, and air pollution exposures. The abundance and diversity of microbial exposures during the first months and years of life have been linked with risk of allergic sensitization and disease. Indoor environmental allergen exposure during early life may also impact disease development, depending on the allergen type, dose, and timing of exposure. Recent evidence supports the role of ambient air pollution in allergic disease inception. The lack of clarity in the literature surrounding the relationship between environment and atopy reflects the complex interplay between cumulative environmental factors and genetic susceptibility, such that no one factor dictates disease development in all individuals. Understanding the impact of the summation of environmental exposures throughout a child's development is needed to identify cost-effective interventions that reduce atopy risk in children.
Rationale: Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB.Objectives: We tested the hypothesis that CB is characterized by mucus hyperconcentration, increased mucus partial osmotic pressures, and reduced mucus clearance.Methods: We measured in subjects with CB as compared with normal and asymptomatic smoking control subjects indices of mucus concentration (hydration; i.e., percentage solids) and sputum adenine nucleotide/nucleoside concentrations. In addition, sputum partial osmotic pressures and mucus transport rates were measured in subjects with CB.Measurements and Results: CB secretions were hyperconcentrated as indexed by an increase in percentage solids and total mucins, in part reflecting decreased extracellular nucleotide/nucleoside concentrations. CB mucus generated concentration-dependent increases in partial osmotic pressures into ranges predicted to reduce mucus transport. Mucociliary clearance (MCC) in subjects with CB was negatively correlated with mucus concentration (percentage solids). As a test of relationships between mucus concentration and disease, mucus concentrations and MCC were compared with FEV 1 , and both were significantly correlated.Conclusions: Abnormal regulation of airway surface hydration may slow MCC in CB and contribute to disease pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.