In this work we prove decidability of the model-checking problem for safe recursion schemes against properties defined by alternating B-automata. We then exploit this result to show how to compute downward closures of languages of finite trees recognized by safe recursion schemes. Higher-order recursion schemes are an expressive formalism used to define languages of finite and infinite ranked trees by means of fixed points of lambda terms. They extend regular and context-free grammars, and are equivalent in expressive power to the simply typed λY-calculus and collapsible pushdown automata. Safety in a syntactic restriction which limits their expressive power. The class of alternating B-automata is an extension of alternating parity automata over infinite trees; it enhances them with counting features that can be used to describe boundedness properties.
Decidability of the problems of unboundedness and simultaneous unboundedness (aka. the diagonal problem) for higher-order recursion schemes was established by Clemente, Parys, Salvati, and Walukiewicz (2016). Then a procedure of optimal complexity was presented by Parys (2017); this procedure used a complicated type system, involving multiple flags and markers. We present here a simpler and much more intuitive type system serving the same purpose. We prove that this type system allows to solve the unboundedness problem for a widely considered subclass of recursion schemes, called safe schemes. For unsafe recursion schemes we only have soundness of the type system: if one can establish a type derivation claiming that a recursion scheme is unbounded then it is indeed unbounded. Completeness of the type system for unsafe recursion schemes is left as an open question. Going further, we discuss an extension of the type system that allows to handle the simultaneous unboundedness problem.We also design and implement an algorithm that fully automatically checks unboundedness of a given recursion scheme, completing in a short time for a wide variety of inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.