1-Deoxy-D-xylulose 5-phosphate (DXP) synthase catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and D-glyceraldehyde 3-phosphate. DXP is at a metabolic branch point in bacteria, feeding into the methylerythritol phosphate pathway to indispensable isoprenoids and acting as a precursor for biosynthesis of essential cofactors in central metabolism, pyridoxal phosphate and ThDP, the latter of which is also required for DXP synthase catalysis. DXP synthase follows a unique random sequential mechanism and possesses an unusually large active site. These features have guided the design of sterically demanding alkylacetylphosphonates (alkylAPs) toward the development of selective DXP synthase inhibitors. alkylAPs studied here display selective, low μM inhibitory activity against DXP synthase. They are weak inhibitors of bacterial growth in standard nutrient rich conditions. However, bacteria are significantly sensitized to most alkylAPs in defined minimal growth medium, with minimal inhibitory concentrations (MICs) ranging from low μM to low mM and influenced by alkyl-chain length. The longest analog (C8) displays the weakest antimicrobial activity and is a substrate for efflux via AcrAB-TolC. The dependence of inhibitor potency on growth environment emphasizes the need for antimicrobial screening conditions that are relevant to the in vivo microbial microenvironment during infection. DXP synthase expression and thiamin supplementation studies offer support for DXP synthase as an intracellular target for some alkylAPs and reveal both the challenges and intriguing aspects of these approaches to study target engagement.
The bacterial metabolite 1-deoxy-d-xyulose 5-phosphate (DXP) is essential in bacterial central metabolism feeding into isoprenoid, thiamin diphosphate (ThDP), and pyridoxal phosphate de novo biosynthesis. Halting its production through the inhibition of DXP synthase is an attractive strategy for the development of novel antibiotics. Recent work has revealed that DXP synthase utilizes a unique random sequential mechanism that requires formation of a ternary complex among pyruvate-derived C2α-lactylthiamin diphosphate (LThDP), d-glyceraldehyde 3-phosphate (d-GAP), and enzyme, setting it apart from all other known ThDP-dependent enzymes. Herein, we describe the development of bisubstrate inhibitors bearing an acetylphosphonate (AP) pyruvate mimic and a distal negative charge mimicking the phosphoryl group of d-GAP, designed to target the unique form of DXP synthase that binds LThDP and d-GAP in a ternary complex. A d-phenylalanine-derived triazole acetylphosphonate (d-PheTrAP) emerged as the most potent inhibitor in this series, displaying slow, tight-binding inhibition with a K* of 90 ± 10 nM, forward ( k) and reverse ( k) isomerization rates of 1.1 and 0.14 min, respectively, and exquisite selectivity (>15000-fold) for DXP synthase over mammalian pyruvate dehydrogenase. d-PheTrAP is the most potent, selective DXP synthase inhibitor described to date and represents the first inhibitor class designed specifically to exploit the unique E-LThDP-GAP ternary complex in ThDP enzymology.
Summary Lipoate scavenging from the human host is essential for malaria parasite survival. Scavenged lipoate is covalently attached to three parasite proteins: the H-protein and the E2 subunits of branched chain amino acid dehydrogenase (BCDH) and α-ketoglutarate dehydrogenase (KDH). We show mitochondrial localization for the E2 subunits of BCDH and KDH, similar to previously localized H-protein, demonstrating that all three lipoylated proteins reside in the parasite mitochondrion. The lipoate ligase 1, LipL1, has been shown to reside in the mitochondrion and it catalyzes the lipoylation of the H-protein; however, we show that LipL1 alone cannot lipoylate BCDH or KDH. A second mitochondrial protein with homology to lipoate ligases, LipL2, does not show ligase activity and is not capable of lipoylating any of the mitochondrial substrates. Instead, BCDH and KDH are lipoylated through a novel mechanism requiring both LipL1 and LipL2. This mechanism is sensitive to redox conditions where BCDH and KDH are exclusively lipoylated under strong reducing conditions in contrast to the H-protein which is preferentially lipoylated under less reducing conditions. Thus, malaria parasites contain two different routes of mitochondrial lipoylation, an arrangement that has not been described for any other organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.