Abstract. We prove the equivalence of two seemingly very different ways of generalising Rademacher's theorem to metric measure spaces. One such generalisation is based upon the notion of forming partial derivatives along a very rich structure of Lipschitz curves in a way analogous to the differentiability theory of Euclidean spaces. This approach to differentiability in this generality appears here for the first time and by examining this structure further, we naturally arrive to several descriptions of Lipschitz differentiability spaces.
We show if a metric measure space admits a differentiable structure then porous sets have measure zero and hence the measure is pointwise doubling. We then give a construction to show if we only require an approximate differentiable structure the measure need no longer be pointwise doubling.
Abstract. We construct a purely unrectifiable set of finite H 1 -measure in every infinite dimensional separable Banach space X whose image under every 0 = x * ∈ X * has positive Lebesgue measure. This demonstrates completely the failure of the Besicovitch-Federer projection theorem in infinite dimensional Banach spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.