As a land use management system, agroforestry has environmental, economic and societal benefits over conventional agriculture or forestry. Important benefits of combining tree growth with agricultural crops and/or forage production systems include higher biodiversity through more diverse habitats, the control of runoff and soil erosion, the augmentation of soil water availability, the creation of microclimates, carbon sequestration and provision of a more diverse farm economy. As the climate changes, north eastern Germany is likely to be particularly prone to severe effects from droughts and wind erosion in the future. However, the area of land under agroforestry makes up less than 2% of the total agricultural area in Germany. Through qualitative interviews with key actors, this study analyzed the benefits of, potentials for and barriers to implementing agroforestry systems in the federal state of Brandenburg. Results showed that agroforestry systems have significant potential in relation to several benefits, particularly the mitigation of soil erosion and stabilization of microclimate regimes. Additionally, agroforestry has the potential to provide wood for energy production or material uses. Although a small but highly innovative and interlinked community exists, administrative barriers and high start-up costs currently hamper the transition from conventional agriculture to agroforestry systems.
Although the exploration of infrastructure has become a main focus of urban-centered studies and urban theory over the last decade, it has only been partially adopted into design and planning education. Here, the traditional curriculum of architecture, urban planning, landscape architecture, and urban design offers emerging professionals limited guidance and tools for exploring and analyzing the complex assemblages and constituting systems that create, run, and shape cities. However, in times of dramatic need for systemic transformation, the critical and research-based analysis of the city’s externalities and the flows underlying urban life will become more relevant by the day. Thus, the following article outlines three teaching methodologies for analyzing “infrastructural regimes” as key levers and contexts to embed a reflected and responsive design work directed at transformation towards global sustainability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.