Concentrations of 54 volatile organic compounds (VOCs) and ventilation rates were measured in four new manufactured houses over 2-9.5 months following installation and in seven new site-built houses 1-2 months after completion. The houses were in four projects located in hot-humid and mixed-humid climates. They were finished and operational, but unoccupied. Ventilation rates ranged from 0.14-0.78 h-1. Several of the site-built houses had ventilation rates below the ASHRAE recommended value. In both manufactured and site-built houses, the predominant airborne compounds were alpha-pinene, formaldehyde, hexanal, and acetic acid. Formaldehyde concentrations were below or near 50 ppb with a geometric mean value for all houses of 40 ppb. Similarities in the types of VOCs and in VOC concentrations indicated that indoor air quality in the houses was impacted by the same or similar sources. Major identified sources included plywood flooring, latex paint and sheet vinyl flooring. One site-built house was operated at ventilation rates of 0.14 and 0.32 h-1. VOC emission rates calculated at the two conditions agreed within +/- 10% for the most volatile compounds. Generally, the ratios of emission rates at the low and high ventilation rates decreased with decreasing compound volatility. Changes in VOC emission rates in the manufactured houses over 2-9.5 months after installation varied by compound. Only several compounds showed a consistent decrease in emission rate over this period.
Formaldehyde, less volatile aldehydes, and terpene hydrocarbons are generally the predominant air contaminants in new manufactured and site-built houses. This study was conducted to identify the major sources of these compounds in a typically constructed, new manufactured house and to evaluate several source reduction practices. Specimens of materials used within the house were collected. These were individually pre-conditioned for 19 +/- 4 days, and tested for emissions of formaldehyde and other target compounds using small-scale chambers. Several cabinetry materials, passage doors, and the plywood subfloor were the predominant sources of formaldehyde and other aldehydes. The plywood subfloor was the predominant terpene source. Whole-house emission rates for combined materials were predicted based on the emission factors and the corresponding material quantities. These predicted rates were compared with whole-house emission rates derived from measurements made at the house 3 months after its installation. For 10 of 14 target compounds including formaldehyde, the predicted and derived rates were within a factor of two. Four emission barriers applied to plywood were shown to reduce emission factors for formaldehyde, hexanal, and other aldehydes.
evaluating-moisture-control-variable-capacity-heat-pumps-mechanicallyventilated-low-load-homes-climate-zone This material is based upon work supported by the Department of Energy's Offi ce of Energy Effi ciency and Renewable Energy (EERE) under the Building Technologies Offi ce under Award Number(s) EE0007056.The work presented in this EERE Building America report does not represent performance of any product relative to regulated minimum effi ciency requirements.The laboratory and/or fi eld sites used for this work are not certifi ed rating test facilities. The conditions and methods under which products were characterized for this work differ from standard rating conditions, as described.Because the methods and conditions differ, the reported results are not comparable to rated product performance and should only be used to estimate performance under the measured conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.