In recent years, global forced displacement has reached record levels, with 22.5 million refugees worldwide. Forecasting refugee movements is important, as accurate predictions can help save refugee lives by allowing governments and NGOs to conduct a better informed allocation of humanitarian resources. Here, we propose a generalized simulation development approach to predict the destinations of refugee movements in conflict regions. In this approach, we synthesize data from UNHCR, ACLED and Bing Maps to construct agent-based simulations of refugee movements. We apply our approach to develop, run and validate refugee movement simulations set in three major African conflicts, estimating the distribution of incoming refugees across destination camps, given the expected total number of refugees in the conflict. Our simulations consistently predict more than 75% of the refugee destinations correctly after the first 12 days, and consistently outperform alternative naive forecasting techniques. Using our approach, we are also able to reproduce key trends in refugee arrival rates found in the UNHCR data.
In this paper, a novel particle swarm optimization (PSO) algorithm is proposed in order to improve the accuracy of traditional clustering approaches with applications in analyzing real-time patient attendance data from an accident & emergency (A&E) department in a local UK hospital. In the proposed randomly occurring distributedly delayed particle swarm optimization (RODDPSO) algorithm, the evolutionary state is determined by evaluating the evolutionary factor in each iteration, based on which the velocity updating model switches from one mode to another. With the purpose of reducing the possibility of getting trapped in the local optima and also expanding the search space, randomly occurring time-delays that reflect the history of previous personal best and global best particles are introduced in the velocity updating model in a distributed manner. Eight well-known benchmark functions are employed to evaluate the proposed RODDPSO algorithm which is shown via extensive comparisons to outperform some currently popular PSO algorithms. To further illustrate the application potential, the RODDPSO algorithm is successfully exploited in the patient clustering problem for data analysis with respect to a local A&E department in West London. Experiment results demonstrate that the RODDPSO-based clustering method is superior over two other well-known clustering algorithms.
The recent Covid-19 outbreak has had a tremendous impact on the world, and many countries are struggling to help incoming patients and at the same time, rapidly enact new public health measures such as lock downs. Many of these decisions are guided by the outcomes of so-called Susceptible-Exposed-Infectious-Recovered (SEIR) models that operate on a national level. Here we introduce the Flu And Coronavirus Simulator (FACS), a simulation tool that models the viral spread at the sub-national level, incorporating geospatial data sources to extract buildings and residential areas in a region. Using FACS, we can model Covid-19 spread at the local level, and provide estimates of the spread of infections and hospital arrivals for different scenarios. We validate the simulation results with the ICU admissions obtained from the local hospitals in the UK. Such validated models can be used to support local decision-making for an effective health care capability response to the epidemic.
This research aims to explore how to enhance student engagement in higher education institutions (HEIs) while using a novel conversational system (chatbots). The principal research methodology for this study is design science research (DSR), which is executed in three iterations: personas elicitation, a survey and development of student engagement factor models (SEFMs), and chatbot interaction analysis. This paper focuses on the first iteration, personas elicitation, which proposes a data-driven persona development method (DDPDM) that utilises machine learning, specifically the K-means clustering technique. Data analysis is conducted using two datasets. Three methods are used to find the K-values: the elbow, gap statistic, and silhouette methods. Subsequently, the silhouette coefficient is used to find the optimal value of K. Eight personas are produced from the two data analyses. The pragmatic findings from this study make two contributions to the current literature. Firstly, the proposed DDPDM uses machine learning, specifically K-means clustering, to build data-driven personas. Secondly, the persona template is designed for university students, which supports the construction of data-driven personas. Future work will cover the second and third iterations. It will cover building SEFMs, building tailored interaction models for these personas and then evaluating them using chatbot technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.