Techniques, such as micropipette aspiration and optical tweezers, are widely used to measure cell mechanical properties, but are generally labor-intensive and time-consuming, typically involving a difficult process of manipulation. In the past two decades, a large number of microfluidic devices have been developed due to the advantages they offer over other techniques, including transparency for direct optical access, lower cost, reduced space and labor, precise control, and easy manipulation of a small volume of blood samples. This review presents recent advances in the development of microfluidic devices to evaluate the mechanical response of individual red blood cells (RBCs) and microbubbles flowing in constriction microchannels. Visualizations and measurements of the deformation of RBCs flowing through hyperbolic, smooth, and sudden-contraction microchannels were evaluated and compared. In particular, we show the potential of using hyperbolic-shaped microchannels to precisely control and assess small changes in RBC deformability in both physiological and pathological situations. Moreover, deformations of air microbubbles and droplets flowing through a microfluidic constriction were also compared with RBCs deformability.
Gas embolisms can hinder blood flow and lead to occlusion of the vessels and ischemia. Bubbles in microvessels circulate as tubular bubbles (Taylor bubbles) and can be trapped, blocking the normal flow of blood. To understand how Taylor bubbles flow in microcirculation, in particular, how bubbles disturb the blood flow at the scale of blood cells, experiments were performed in microchannels at a low Capillary number. Bubbles moving with a stream of in vitro blood were filmed with the help of a high-speed camera. Cell-free layers (CFLs) were observed downstream of the bubble, near the microchannel walls and along the centerline, and their thicknesses were quantified. Upstream to the bubble, the cell concentration is higher and CFLs are less clear. While just upstream of the bubble the maximum RBC concentration happens at positions closest to the wall, downstream the maximum is in an intermediate region between the centerline and the wall. Bubbles within microchannels promote complex spatio-temporal variations of the CFL thickness along the microchannel with significant relevance for local rheology and transport processes. The phenomenon is explained by the flow pattern characteristic of low Capillary number flows. Spatio-temporal variations of blood rheology may have an important role in bubble trapping and dislodging.
Intracranial aneurysm is a local dilatation of an intracranial artery with high risk of rupture and death. Although it is generally accepted that the weakening of the arterial wall is the main cause for the rupture of an aneurysm, it still no consensus about the reasons for its creation, expansion and rupture. In particular, what is the role played by the blood flow in these phenomena. In this way, the aim of this work is the in vitro mechanical assessment of the wall expansion, namely the displacements, deformations and strains occurring in a saccular intracranial aneurysm model, when subjected to different flow rates. To obtain new insights into the mechanisms involved in the aneurysm rupture, a 3D-Vic TM Digital Image Correlation System was used and validated with a finite element analysis. The wall expansion results have revealed that the displacements, deformations and principal strains are directly related to the internal pressure caused by the fluid on the wall of the aneurism. These findings were especially observed in the weakened areas of the aneurysm model, where the wall was thinner. Furthermore, the technique used in this study has shown to be a potential method to validate numerical simulations of aneurysms, allowing the future performance of more complex and realistic haemodynamic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.