As Deep Learning (DL) is continuously adopted in many safety critical applications, its quality and reliability start to raise concerns. Similar to the traditional software development process, testing the DL software to uncover its defects at an early stage is an effective way to reduce risks after deployment. Although recent progress has been made in designing novel testing techniques for DL software, the distribution of generated test data is not taken into consideration. It is therefore hard to judge whether the identified errors are indeed meaningful errors to the DL application. Therefore, we propose a new distribution aware testing technique which aims to generate new unseen test cases relevant to the underlying DL system task. Our results show that this technique is able to filter up to 55.44% of error test case on CIFAR-10 and is 10.05% more effective in enhancing robustness.
The performance of a machine learning-based malware classifier depends on the large and updated training set used to induce its model. In order to maintain an up-to-date training set, there is a need to continuously collect benign and malicious files from a wide range of sources, providing an exploitable target to attackers. In this study, we show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier. The attacker's ultimate goal is to ensure that the model induced by the poisoned dataset will be unable to detect the attacker's malware yet capable of detecting other malware. As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger, reducing the detection rate from 99.23% to 0% depending on the amount of poisoning. We evaluate our attack on the EMBER dataset with a state-of-the-art classifier and malware samples from VirusTotal for end-to-end validation of our work. We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.