A modified statistical associating fluid theory (SAFT) with variable range version is presented using the family of m-n Mie potentials. The use of this intermolecular potential for modeling repulsion-dispersion interactions between the monomer segments, together with a new method for optimizing the molecular parameters of the equation of state, is found to give a very accurate description of both vapor-liquid equilibria and compressed liquid bulk properties (volumetric and derivative properties) for long-chain n-alkanes. This new equation improves other SAFT-like equations of state which fail to describe derivative properties such as the isothermal compressibility and the speed of sound in the condensed liquid phase. Emphasis is placed on pointing out that the key for modeling the latter properties is the use of a variable repulsive term in the intermolecular potential. In the case of the n-alkanes series, a clear dependence of the characteristic molecular parameters on increasing chain length is obtained, demonstrating their sound physical meaning and the consistency of the new fitting procedure proposed. This systematic method for optimizing the model parameters includes data on the saturation line as well as densities and speed of sound data in the condensed liquid phase, and the results show undoubtedly that the model performance is enhanced and its range of applicability is now widened, keeping in any case a good balance between the accuracy of the different estimated properties.
A recently derived version of the statistical associating fluid theory (SAFT), denoted as SAFT-VR Mie, which incorporates the Mie potentials within the SAFT-VR framework to model the monomer segment interactions (Lafitte et al. J. Chem. Phys. 2006, 124, 024509), is used for the study of second-order derivative properties and phase equilibria of alcohols and 1-alcohol + n-alkane binary mixtures. For this purpose, a variable repulsive potential is used to induce nonconformal interactions in the reference nonbonded fluid. These features have a significant influence on the chain and association contributions through the contact value of the radial distribution function, and they enhance the SAFT theory performance in the application to associating substances. When dealing with pure alcohols and 1-alcohol + n-alkane binary mixtures, an accurate description of both phase equilibria and second-order derivatives is obtained with a single set of molecular parameters. To explore the predictive ability limit of the model we have particularly focused our attention on secondary derivative properties, which display singularities due to the formation of aggregates. With this approach, we have found that the model is able to reproduce accurately the complex behavior of the isobaric heat capacity of alcohols as, for instance, the maximum versus temperature in the compressed liquid region. Furthermore, in the case of 1-hexanol + n-hexane binary mixtures, the proposed equation is found to capture the association effects on the pressure and temperature dependence of the isobaric thermal expansivity. These two special features, which to our knowledge have never been described by a theoretical model, emphasize both the validity of the changes in the model proposed and the physical meaning of the molecular parameters obtained in this study.
The Gradient Theory of fluid interfaces is for the first time combined with the SAFT-VR Mie EOS to model the interfacial properties of the water/CO(2) mixture. As a preliminary test of the performance of the coupling between both theories, liquid-vapor interfacial properties of pure water have been determined. The complex temperature dependence of the surface tension of water can be accurately reproduced, and the interfacial thickness is in good agreement with experimental data and simulation results. The water/CO(2) mixture presents several types of interfaces as the liquid water may be in contact with gaseous, liquid, or supercritical CO(2). Here, the interfacial tension of the water/CO(2) mixture is modeled accurately by the gradient theory with a unique value of the crossed influence parameter over a broad range of thermodynamic conditions. The interfacial density profiles show a systematic adsorption of CO(2) in the interface. Moreover, when approaching the saturation pressure of CO(2), a prewetting transition is highlighted. The adsorption isotherm of CO(2) is computed as well in the case of a gas/liquid interface and compared with experimental data. The good agreement obtained is an indirect proof of the consistency of interfacial density profiles computed with the gradient theory for this mixture and confirms that the gradient theory is suitable and reliable to describe the microstructure of complex fluid interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.