Highlights d Monkey performance of working memory tasks improves with nucleus basalis (NB) stimulation d Activity of prefrontal neurons increases under NB stimulation d Tuning of neurons becomes broader, making the network more stable d Working memory performance is determined by a stabilityaccuracy tradeoff
The action of acetylcholine in the neocortex is critical for executive function. Cholinergic drugs can improve cognitive function in patient populations and normal adults. How endogenous cholinergic action affects neuronal activity in higher cortical areas is unknown. Here we tested the effects of electrical stimulation of the cortical source of acetylcholine in primates, the Nucleus Basalis of Meynert, on neural activity while monkeys performed working memory tasks.Stimulation delivered in an intermittent fashion improved behavioral performance and increased neuronal activity during the delay period of the task but not to the phasic responses of visual stimuli. Selectivity of neuronal responses broadened, rendering the bump of activity in an attractor network more stable, and filtering distracting stimuli more effectively. These neural results show that acetylcholine has effects on neural activity and selectivity in the prefrontal cortex opposing those of dopamine and fine tuning aggregate neural ensemble activity based on neuromodulatory tone.
How episodic memories decay is an unresolved question in cognitive neuroscience. The role of short-term mechanisms regarding the decay of episodic memories is circumscribed to set the maximum recall from which a monotonic decay occurs. However, this sequential view from the short to the long-term is not compulsory, as short-term dependent memory gains (like recency effects when memorizing a list of elements; serial-position effects) may not be translated into long-term memory differences. Moreover, producing memorable events in the laboratory faces important challenges, such as recreating realistic conditions with elevated recall, or avoiding spontaneous retrievals during memory retention (sociocultural hooks). Here we propose the use of magic to enhance the study of memory. We designed a sequence of magic tricks performed live on stage to evaluate the interaction between memory decay and serial-position effects of those tricks. The audience was asked to freely recall the tricks at four different timepoints: just after the show, 10 days, 1.5 months and 4.5 months. We discovered serial-position differences after the show that were no longer present later on, suggesting that short-term memory gains do not translate into the long-term. Illustrating the power of naturalistic stimuli to study long-term memory while interrogating the interaction between short-term and long-term mechanisms, this work is, to our knowledge, the first scientific study of the memorability of magic tricks.
How episodic memories decay is an unresolved question in cognitive neuroscience. The role of short-term mechanisms regarding the decay of episodic memories is circumscribed to set the maximum recall from which a monotonic decay occurs. However, this sequential view from the short to the long-term is not compulsory, as short-term dependent memory gains (like recency effects when memorizing a list of elements; serial-position effects) may not be translated into long-term memory differences. Moreover, producing memorable events in the laboratory faces important challenges, such as recreating realistic conditions with elevated recall, or avoiding spontaneous retrievals during memory retention (sociocultural hooks). Here we propose the use of magic to enhance the study of memory. We designed a sequence of magic tricks performed live on stage to evaluate the interaction between memory decay and serial-position effects of those tricks. The audience was asked to freely recall the tricks at four different timepoints: just after the show, 10 days, 1.5 months and 4.5 months. We discovered serial-position differences after the show that were no longer present later on, suggesting that short-term memory gains do not translate into the long-term. Illustrating the power of naturalistic stimuli to study long-term memory while interrogating the interaction between short-term and long-term mechanisms, this work is, to our knowledge, the first scientific study of the memorability of magic tricks.
How episodic memories decay is an unresolved question in cognitive neuroscience. The role of short-term mechanisms regarding the decay of episodic memories is circumscribed to set the maximum recall from which a monotonic decay occurs. However, this sequential view from the short to the long-term is not compulsory, as short-term dependent memory gains (like recency effects when memorizing a list of elements; serial-position effects) may not be translated into long-term memory differences. Moreover, producing memorable events in the laboratory faces important challenges, such as recreating realistic conditions with elevated recall, or avoiding spontaneous retrievals during memory retention (sociocultural hooks). The current study proposes the use of magic to enhance the study of memory. We designed a sequence of magic tricks performed live on stage to evaluate the interaction between memory decay and serial-position effects of those tricks. The audience was asked to freely recall the tricks at four different timepoints: just after the show, 10 days, 1.5 months and 4.5 months. We discovered serial-position differences after the show that were no longer present later on, suggesting that short-term memory gains do not translate into the long-term. Illustrating the power of naturalistic stimuli to study long-term memory while interrogating the interaction between short-term and long-term mechanisms, this work is, to our knowledge, the first scientific study of the memorability of magic tricks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.