mesoporous stack-titania (m-TiO 2 ), zirconia (ZrO 2 ), carbon (C)-is printable, C-PSCs are ideal for large scale production and, interestingly, some features that prevent degradation, i.e., lack of metal cathode [9] and organic HTM, [10] are also responsible for the simpler manufacturing process, paving the way for C-PSCs to move quickly from the lab to the market. This module architecture not only uses low-cost materials but can be produced by equipment that has a very low-capital cost thus reducing the barrier to commercialization of perovskite modules. Constraining the grain growth of the perovskite completely within the three mesoporous structures enables crystallization of the perovskite over large areas without the need for dynamic drying [11,12] to mimic the spin coating process. [13] There have been some reports demonstrating that C-PSC modules can be produced by screen printing, via registration of the overlapping layers, and can deliver between 10 and 11% power conversion efficiency (PCE) on 10 × 10 cm 2 substrates, with active areas ranging from 47.6 [7,14] to 70 cm 2 , [15] and, in particular, showing over 1 year stability under illumination, as reported by Grancini et al. [7] These results for C-PSC modules are even more remarkable, considering that modules with comparable active areas (>45 cm 2 ) and different device architecture, yielded respectively 12.6% PCE on 50.6 cm 2 (FTO/c-TiO 2 /graphene+m-TiO 2 / GO-Li/perovskite/spiro-OMeTAD/Au), [16] 8.7% PCE on 60 cm 2 (ITO/PEDOT:PSS/perovskite/PCBM/Au), [17] and 4.3% PCE on 100 cm 2 (FTO/c-TiO 2 /m-TiO 2 /perovskite/spiro-OMeTAD/ Au) [11] ; moreover, the record for PSC modules overall is Microquanta's 16% PCE [18,19] on just 16.29 cm 2 aperture area (active area + dead area for interconnections).Upscaling C-PSC manufacture from 10 × 10 cm 2 to larger substrate dimensions, e.g., A4 size as in our case, is far from trivial. Spraying the TiO 2 blocking layer (BL) at temperatures as high as 300 °C causes the large substrates to crack in the worst case or to bend, compromising the thickness homogeneity over the substrate of the printed layers, mostly and more crucially for the thinnest of the three, the sub-micrometric m-TiO 2 . Any change in the layers' thickness across the substrate can affect the performance of individual cells constituting the module Perovskite solar cells based on an all printable mesoporous stack, made of overlapping titania, zirconia, and carbon layers, represent a promising device architecture for both simple, low-cost manufacture, and outstanding stability. Here a breakthrough in the upscaling of this technology is reported: Screen printed modules on A4 sized conductive glass substrates, delivering power conversion efficiency (PCE) ranging from 3 to 5% at 1 sun on an unprecedented 198 cm 2 active area. An increase in the PCE, due to higher V OC and fill factor, is demonstrated by patterning the TiO 2 blocking layer. Furthermore, an unexpected increase of the performance is observed over time, while storing the modules in the dark,...
Since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 in tin selenide (SnSe), the material has attracted much attention in the field of thermoelectrics. This paper reports a novel pseudo‐3D printing technique to fabricate bulk SnSe thermoelectric elements, allowing for the fabrication of standard configuration thermoelectric generators. In contrast to fabrication examples presented to date, this technique is potentially very low‐cost and allows for facile, scalable, and rapid fabrication. Bulk SnSe thermoelectric elements are produced and characterized over a wide range of temperatures. An element printed from an ink with 4% organic binder produces the highest performance, with a ZT value of 1.7 (±0.25) at 758 K. This is the highest ZT reported of any printed thermoelectric material, and the first bulk printed material to operate at this temperature. Finally, a proof‐of‐concept, all printed SnSe thermoelectric generator is presented, producing 20 µW at 772 K.
SummaryPhotovoltaic devices based on perovskite materials have a great potential to become an exceptional source of energy while preserving the environment. However, to enter the global market, they require further development to achieve the necessary performance requirements. The environmental performance of a pre-industrial process of production of a large-area carbon stack perovskite module is analyzed in this work through life cycle assessment (LCA). From the pre-industrial process an ideal process is simulated to establish a benchmark for pre-industrial and laboratory-scale processes. Perovskite is shown to be the most harmful layer of the carbon stack module because of the energy consumed in the preparation and annealing of the precursor solution, and not because of its Pb content. This work stresses the necessity of decreasing energy consumption during module preparation as the most effective way to reduce environmental impacts of perovskite solar cells.
Roll-to-roll coating of all active layers is demonstrated for a P–I–N perovskite solar cell stack, using a single step perovskite ink with an acetonitrile solvent system and flexible plastic substrate.
Low viscosity rapid drying perovskite formulations designed to give high quality solar films when slot-die coated on flexible roll-to-roll compatible substrates are developed .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.