Telecommunications have grown to be a pillar to a functional society and the urge for reliable and high throughput systems has become the main objective of researchers and engineers. State-of-the-art work considers massive Multiple-Input Multiple-Output (massive MIMO) as the key technology for 5G and beyond. Large spatial multiplexing and diversity gains are some of the major benefits together with an improved energy efficiency. Current works mostly assume the application of well-established techniques in a massive MIMO scenario, although there are still open challenges regarding hardware and computational complexities and energy efficiency. Fully digital, analog, and hybrid structures are analyzed and a multi-layer massive MIMO transmission technique is detailed. The purpose of this article is to describe the most acknowledged transmission techniques for massive MIMO systems and to analyze some of the most promising ones and identify existing problems and limitations.
Massive multiple-input multiple-output systems (mMIMO) are the most prevalent candidates for the next generation of wireless communication. Yet even with mMIMO systems the joint optimization of spectral and energy efficiencies can be only attained by combining high order signal constellations and efficient power amplification. In order to push this limitation, the transmitter can spread the information into several amplification branches, which are the result of the decomposition of multilevel constellation symbols into quasi constant envelope signals. Nevertheless, the high number of antennas involved in this type of communication leads to an increase of the channel matrix's size and therefore the complexity of the equalization process can create drawbacks for the power consumption and latency. In this paper we will study the combination of a multi-layer transmitter with a low complexity receivers based on an iterative block decision feedback equalizer (IB-DFE). These receivers avoid the matrix inversion operation in the equalizer the feed-forward by replacing it with an equal gain combiner (EGC) or a maximum ratio combiner (MRC) module. Results show that can be used without penalties on performance provided that the number of antennas involved is high.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.