Modern attempts to produce biogeographic maps focus on the distribution of species, and the maps are typically drawn without phylogenetic considerations. Here, we generate a global map of zoogeographic regions by combining data on the distributions and phylogenetic relationships of 21,037 species of amphibians, birds, and mammals. We identify 20 distinct zoogeographic regions, which are grouped into 11 larger realms. We document the lack of support for several regions previously defined based on distributional data and show that spatial turnover in the phylogenetic composition of vertebrate assemblages is higher in the Southern than in the Northern Hemisphere. We further show that the integration of phylogenetic information provides valuable insight on historical relationships among regions, permitting the identification of evolutionarily unique regions of the world.
Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58 ± 2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63 ± 2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P<0.001), but Natura 2000 areas retain climate suitability for species no better and sometimes less effectively than unprotected areas. The risk is high that ongoing efforts to conserve Europe's biodiversity are jeopardized by climate change. New policies are required to avert this risk.
Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary remain contentious. We use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, underscoring the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
Despite two centuries of effort in characterizing environmental gradients of species richness in search of universal patterns, surprisingly few of these patterns have been widely acknowledged [1][2][3] . Species richness along altitudinal gradients was previously assumed to increase universally from cool highlands to warm lowlands, mirroring the latitudinal increase in species richness from cool to warm latitudes 1,4,5 . However, since the more recent general acceptance of altitudinal gradients as model templates for testing hypotheses behind large-scale patterns of diversity 5-9 , these gradients have been used in support of all the main diversity hypotheses, although little consensus has been achieved. Here we show that when resampling a data set comprising 400,000 records for 3,046 Pyrenean floristic species at different scales of analysis (achieved by varying grain size and the extent of the gradients sampled), the derived species richness pattern changed progressively from hump-shaped to a monotonic pattern as the scale of extent diminished. Scale effects alone gave rise to as many conflicting patterns of species richness as had previously been reported in the literature, and scale effects lent significantly different statistical support to competing diversity hypotheses. Effects of scale on current studies may be affected by human activities, because montane ecosystems and human activities are intimately connected 10 . This interdependence has led to a global reduction in natural lowland habitats, hampering our ability to detect universal patterns and impeding the search for universal diversity gradients to discover the mechanisms determining the distribution of biological diversity on Earth.Studies of altitudinal gradients in species richness have increasingly replaced the latitudinal gradient as a model template for largescale gradient studies 9 . Altitudinal gradients encompass several gradients in climatic and environmental factors, such as area, net primary productivity and geometric constraints. These factors are expected to influence spatial variation in species richness (Supplementary Fig. 1) but are often correlated, making hypothesis testing problematic and controversial 3 . However, these very controversies make altitudinal gradients an illuminating field of study. A recent quantitative analysis of altitudinal species richness gradients including 204 data sets demonstrated that about 50% of the pattern distributions were hump-shaped, about 25% showed a monotonically decreasing pattern, and about 25% followed other distributions 9 . It has therefore been suggested that non-generality in altitudinal species richness patterns may be a result of differences in spatial design between studies 9 . These differences include the choice of grain size and the extent and proportion of gradients sampled. Nevertheless, statistical correlations between these diverse patterns and associated patterns of climate 11,12 , area 8,13,14 and, more recently, geometric constrains 8,15 have been used as support for comp...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.