Pathological and physiological stimuli, including acute exercise, activate autophagy; however, it is unknown whether exercise training alters basal levels of autophagy and whether autophagy is required for skeletal muscle adaptation to training. We observed greater autophagy flux (i.e., a combination of increased LC3-II/LC3-I ratio and LC3-II levels and reduced p62 protein content indicating a higher rate of initiation and resolution of autophagic events), autophagy protein expression (i.e., Atg6/Beclin1, Atg7, and Atg8/LC3) and mitophagy protein Bnip3 expression in tonic, oxidative muscle compared to muscles of either mixed fiber types or of predominant glycolytic fibers in mice. Long-term voluntary running (4 wk) resulted in increased basal autophagy flux and expression of autophagy proteins and Bnip3 in parallel to mitochondrial biogenesis in plantaris muscle with mixed fiber types. Conversely, exercise training promoted autophagy protein expression with no significant increases of autophagy flux and mitochondrial biogenesis in the oxidative soleus muscle. We also observed increased basal autophagy flux and Bnip3 content without increases in autophagy protein expression in the plantaris muscle of sedentary muscle-specific Pgc-1α transgenic mice, a genetic model of augmented mitochondrial biogenesis. These findings reveal that endurance exercise training-induced increases in basal autophagy, including mitophagy, only take place if an enhanced oxidative phenotype is achieved. However, autophagy protein expression is mainly dictated by contractile activity independently of enhancements in oxidative phenotype. Exercise-trained mice heterozygous for the critical autophagy protein Atg6 showed attenuated increases of basal autophagy flux, mitochondrial content, and angiogenesis in skeletal muscle, along with impaired improvement of endurance capacity. These results demonstrate that increased basal autophagy is required for endurance exercise training-induced skeletal muscle adaptation and improvement of physical performance.
Insulin resistance is associated with mitochondrial dysfunction, but the mechanism by which mitochondria inhibit insulin-stimulated glucose uptake into the cytoplasm is unclear. The mitochondrial permeability transition pore (mPTP) is a protein complex that facilitates the exchange of molecules between the mitochondrial matrix and cytoplasm, and opening of the mPTP occurs in response to physiological stressors that are associated with insulin resistance. In this study, we investigated whether mPTP opening provides a link between mitochondrial dysfunction and insulin resistance by inhibiting the mPTP gatekeeper protein cyclophilin D (CypD) in vivo and in vitro. Mice lacking CypD were protected from high fat diet-induced glucose intolerance due to increased glucose uptake in skeletal muscle. The mitochondria in CypD knockout muscle were resistant to diet-induced swelling and had improved calcium retention capacity compared to controls; however, no changes were observed in muscle oxidative damage, insulin signaling, lipotoxic lipid accumulation or mitochondrial bioenergetics. In vitro, we tested 4 models of insulin resistance that are linked to mitochondrial dysfunction in cultured skeletal muscle cells including antimycin A, C2-ceramide, ferutinin, and palmitate. In all models, we observed that pharmacological inhibition of mPTP opening with the CypD inhibitor cyclosporin A was sufficient to prevent insulin resistance at the level of insulin-stimulated GLUT4 translocation to the plasma membrane. The protective effects of mPTP inhibition on insulin sensitivity were associated with improved mitochondrial calcium retention capacity but did not involve changes in insulin signaling both in vitro and in vivo. In sum, these data place the mPTP at a critical intersection between alterations in mitochondrial function and insulin resistance in skeletal muscle.
Lipid deposition in the liver is associated with metabolic disorders including fatty liver disease, type II diabetes, and hepatocellular cancer. The enzymes acetyl-CoA carboxylase 1 (ACC1) and ACC2 are powerful regulators of hepatic fat storage; therefore, their inhibition is expected to prevent the development of fatty liver. In this study we generated liver-specific ACC1 and ACC2 double knockout (LDKO) mice to determine how the loss of ACC activity affects liver fat metabolism and whole-body physiology. Characterization of LDKO mice revealed unexpected phenotypes of increased hepatic triglyceride and decreased fat oxidation. We also observed that chronic ACC inhibition led to hyper-acetylation of proteins in the extra-mitochondrial space. In sum, these data reveal the existence of a compensatory pathway that protects hepatic fat stores when ACC enzymes are inhibited. Furthermore, we identified an important role for ACC enzymes in the regulation of protein acetylation in the extra-mitochondrial space.
Background & Aims Mice exposed to the hepatocellular carcinogen diethylnitrosamine at 2 weeks of age have a high risk of developing primary liver tumors later in life. Previous studies have demonstrated that diethylnitrosamine-treated mice have increased tumor burden when fed an obesigenic “Western” diet rich in lard fat and sugar. However, the role of dietary fats versus sugars in the promotion of liver cancer is poorly understood. The aim of this study was to determine how altering dietary fats versus sugars affects tumor burden in the diethylnitrosamine model. Methods C57BL/6N mice were treated with diethylnitrosamine at 2 weeks of age and, from 6 to 32 weeks of age, fed one of five diets that differed in fat and sugar content including normal chow, ketogenic, and Western diets. Results Mice fed sugar-rich diets had the greatest tumor burden irrespective of dietary fat content. In contrast, mice fed a high-fat low-sugar diet had the least tumor burden despite obesity and glucose intolerance. When evaluated as independent variables, tumor burden was positively correlated with hepatic fat accumulation, postprandial insulin, and liver IL-6, and inversely correlated with serum adiponectin. In contrast, tumor burden did not correlate with adiposity, fasting insulin, or glucose intolerance. Furthermore, mice fed high sugar diets had lower liver expression of p21 and cleaved caspase-3 compared to mice fed low sugar diets. Conclusions These data indicate that dietary sugar intake contributes to liver tumor burden independent of excess adiposity or insulin resistance in mice treated with diethylnitrosamine.
The synthesis and properties of 80 short minor groove binders related to distamycin and the thiazotropsins are described. The design of the compounds was principally predicated upon increased affinity arising from hydrophobic interactions between minor groove binders and DNA. The introduction of hydrophobic aromatic head groups, including quinolyl and benzoyl derivatives, and of alkenes as linkers led to several strongly active antibacterial compounds with MIC for Staphylococcus aureus, both methicillin-sensitive and -resistant strains, in the range of 0.1-5 microg mL-1, which is comparable to many established antibacterial agents. Antifungal activity was also found in the range of 20-50 microg mL-1 MIC against Aspergillus niger and Candida albicans, again comparable with established antifungal drugs. A quinoline derivative was found to protect mice against S. aureus infection for a period of up to six days after a single intraperitoneal dose of 40 mg kg-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.