Alternative splicing of mRNA allows many gene products with different functions to be produced from a single coding sequence. It has recently been proposed as a mechanism by which higher-order diversity is generated. Here we show, using large-scale expressed sequence tag (EST) analysis, that among seven different eukaryotes the amount of alternative splicing is comparable, with no large differences between humans and other animals.
The t(X;18)(p11.2;q11.2) chromosomal translocation commonly found in synovial sarcomas fuses the SYT gene on chromosome 18 to either of two similar genes, SSX1 or SSX2, on the X chromosome. The SYT protein appears to act as a transcriptional co-activator and the SSX proteins as co-repressors. Here we have investigated the functional domains of the proteins. The SYT protein has a novel conserved 54 amino acid domain at the N-terminus of the protein (the SNH domain) which is found in proteins from a wide variety of species, and a C-terminal domain, rich in glutamine, proline, glycine and tyrosine (the QPGY domain), which contains the transcriptional activator sequences. Deletion of the SNH domain results in a more active transcriptional activator, suggesting that this domain acts as an inhibitor of the activation domain. The C-terminal SSX domain present in SYT-SSX translocation protein contributes a transcriptional repressor domain to the protein. Thus, the fusion protein has transcriptional activating and repressing domains. We demonstrate that the human homologue of the SNF2/Brahama protein BRM co-localizes with SYT and SYT-SSX in nuclear speckles, and also interacts with SYT and SYT-SSX proteins in vitro. This interaction may provide an explanation of how the SYT protein activates gene transcription.
Expressed sequence tag (EST) databases represent a large volume of information on expressed genes including tissue type, expression profile and exon structure. In this study we create an extensive data set of human alternative splicing. We report the analysis of 7867 non-redundant mRNAs, 3011 of which contained alternative splice forms (38% of all mRNAs analysed). From a total of 12 572 ESTs 4560 different possible alternative splice forms were detected. Interestingly, 70% of the alternative splice forms correspond to exon deletion events with only 30% exonic insertions. We experimentally verified 19 different splice forms from 16 genes in a total subset of 20 studied; all of the respective genes are of medical relevance.z 2000 Federation of European Biochemical Societies.
The t(X;18)(p11.2;q11.2) translocation found in synovial sarcomas results in the fusion of the SYT gene on chromosome 18 to either of two closely related genes SSX1 and SSX2 on chromosome X. The resulting chimaeric genes express SYT-SSX1 or SYT-SSX2 fusion proteins in which the C-terminal amino acids of SYT are replaced by amino acids from the C-terminus of the SSX proteins. Using green fluorescent protein fusions we demonstrate that the SYT, SSX and the SYT-SSX proteins are nuclear proteins. We demonstrate that whilst the SSX1 protein has a uniform nuclear distribution the SYT protein has a speckled distribution in the cell nucleus, and this distribution is retained with the SYT-SSX2 fusion protein. Since the SYT speckles do not co-localise with PML-containing bodies (PODs) or spliceosomes it is possible that they represent a novel nuclear structure. Transfection of constructs expressing GAL4 fusion proteins demonstrate that the SYT domains present in the SYT-SSX fusion proteins can activate transcription of a luciferase reporter. It is proposed that the t(X;18) translocation results in the generation of an SYT-SSX transcriptional co-activator in which the addition of the C-terminal SSX domain to SYT provides a new interacting domain that redirects the SYT activation domain to different target promoters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.