Nature Publishing GroupCorma Canós, A.; Concepción Heydorn, P.; Boronat Zaragoza, M.; Sabater Picot, MJ.; Navas Escrig, J.; Yacaman, MJ.; Larios, E.... (2013). Exceptional oxidation activity with sizecontrolled supported gold clusters of low atomicity. Nature Chemistry. 5 (9) SummaryThe catalyticic activity of gold depends on particle size, with reactivity increasing as particle diameter decreases. Investigation of the trends in the subnanometer regime, where gold exists as small clusters of a few atoms, is now starting thanks to recent advances in synthesis and characterization techniques. An easy method to prepare isolated gold atoms supported on functionalized carbon nanotubes and their performance in the oxidation of thiophenol with O 2 are described. Single gold atoms are not active and they aggregate under reaction conditions into gold clusters of low atomicity, which show a catalytic activity comparable to that sulfhydryl oxidase enzymes. When clusters grow into larger nanoparticles, catalyst activity drops to zero.Theoretical calculations show that gold clusters are able to simultaneously activate thiophenol and O 2 , while larger nanoparticles become passivated by strongly adsorbed thiolates. The combination of an optimum for reactants activation and product desorption makes gold clusters excellent catalysts. Main TextGold has attracted wide interest as catalyst in the last years due to its unexpected activity and, specially, to its high selectivity in organic reactions. [1][2][3] The catalytic properties of gold depend on several factors that in some cases are intimately related:gold particle size and morphology, metal-oxide support interaction, oxidation state of the active sites, etc. 4-8 The influence of particle size has been extensively investigated, and a volcano type curve with a maximum in activity at an optimum diameter has been reported for CO oxidation, 7 alkane oxidation, 9 or propene epoxidation with O 2 and H 2 , 10 while in other cases an exponential increase in activity with decreasing particle size has been observed. 5,11,12 However, the trends in catalytic activity when the particle diameter While it appears that in order to control reactivity, the atomicity control of the gold clusters is crucial, the synthesis of size-selected metal clusters and their deposition over a solid support is a challenging task. 26 The wet-chemistry methods for preparing supported metal clusters involve the anchoring of well defined precursors to an adequate support, 27,28 followed by removal of the ligands by post-synthesis treatments, trying to prevent cluster agglomeration during these steps. 9,[29][30][31]32 Soft landing of monodisperse metal clusters grown in the gas phase and with precise size selection by mass spectrometry is a more straightforward method, but it requires sophisticated equipment, and the scaling up of the process is a major drawback. 20,23,33 In The chemical nature of these isolated atoms has been investigated by X-ray absorption spectroscopy (XAS) and X-ray photoelectron spe...
Subnanometric samples, containing exclusively Ag2 and Ag3 clusters, were synthesized for the first time by kinetic control using an electrochemical technique without the use of surfactants or capping agents. By combination of thermodynamic and kinetic measurements and theoretical calculations, we show herein that Ag3 clusters interact with DNA through intercalation, inducing significant structural distortion to the DNA. The lifetime of Ag3 clusters in the intercalated position is two to three orders of magnitude longer than for classical organic intercalators, such as ethidium bromide or proflavine.
We report the synthesis, for the first time, of small, highly monodisperse Cu 5 clusters in water without any surfactant or protective agent. For this purpose, we used a new approach based on the kinetic control of the reaction, which is achieved with an electrochemical method and using a solution with almost no conductivity (i.e., without added electrolytes commonly used in electrochemical methods). This allows the application of extremely small current densities needed to focus the reaction to synthesize only one selected cluster size. Clusters were characterized by ultraviolet−visible (UV−vis) and fluorescence spectroscopies, atomic force microscopy, electrospray ionization time-of-flight mass spectrometry, X-ray photoelectron spectroscopy, extended X-ray absorption fine structure, and Xray absorption near-edge spectroscopy, showing the presence of only Cu clusters with five atoms. Contrary to what should be expected, such clusters are very stable and remain unaltered in solution, for at least one year, because of their huge band gap (4.07 eV). Moreover, such Cu 5 clusters are extremely stable to UV irradiation, temperature, and pH.
The photoabsorption of TiO2 in the UV gets enhanced and extended to the visible region by decoration with highly stable Cu5 clusters.
H2 production by water splitting is hindered mainly by the lack of low-cost and efficient photocatalysts. Here we show that sub-nanometric silver clusters can catalyze the anisotropic growth of gold nanostructures by preferential adsorption at certain crystal planes of Au seeds, with the result that the final nanostructure can be tuned via the cluster/seed ratio. Such semiconducting Ag clusters are extremely stable and retain their electronic structure even after adsorption at the tips of Au nanorods, enabling various photocatalytic experiments, such as oxygen evolution from basic solutions. In the absence of electron scavengers, UV irradiation generates photoelectrons, which are stored within the nanorods, increasing their Au Fermi level up to the redox pinning limit at 0 V (RHE), where hydrogen evolution occurs with an estimated high efficiency of 10%. This illustrates the considerable potential of very small zerovalent, nonmetallic clusters as novel atomic-level photocatalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.