The anamniote lateral line system, comprising mechanosensory neuromasts and electrosensory ampullary organs, is a useful model for investigating the developmental and evolutionary diversification of different organs and cell types. Zebrafish neuromast development is increasingly well understood, but neither zebrafish nor Xenopus is electroreceptive and our molecular understanding of ampullary organ development is rudimentary. We have used RNA-seq to generate a lateral line-enriched gene-set from late-larval paddlefish (Polyodon spathula). Validation of a subset reveals expression in developing ampullary organs of transcription factor genes critical for hair cell development, and genes essential for glutamate release at hair cell ribbon synapses, suggesting close developmental, physiological and evolutionary links between non-teleost electroreceptors and hair cells. We identify an ampullary organ-specific proneural transcription factor, and candidates for the voltage-sensing L-type Cav channel and rectifying Kv channel predicted from skate (cartilaginous fish) ampullary organ electrophysiology. Overall, our results illuminate ampullary organ development, physiology and evolution.DOI: http://dx.doi.org/10.7554/eLife.24197.001
In Europe, southern peninsulas served as refugia during cold periods in the Pleistocene, acting both as centres of origin of endemisms and as sources from which formerly glaciated areas were recolonized during interglacial periods. Previous studies have revealed that within the main refugial areas, intraspecific lineages often survived in allopatric refugia. We analysed two mitochondrial markers (nad4, control region, approximately 1.4 kb) in 103 individuals representing the entire distribution of Lissotriton boscai, a newt endemic to the western Iberian Peninsula. We inferred the evolutionary history of the species through phylogenetic, phylogeographic and historical demographic analyses. The results revealed unexpected, deep levels of geographically structured genetic variability. We identified two main evolutionary lineages, each containing three well-supported clades. The first historical split involved populations from central-southwestern coastal Portugal and the ancestor of all the remaining populations around 5.8 million years ago. Both lineages were subsequently fragmented into different population groups between 2.5 and 1.2 million years ago. According to nested clade analysis, at lower hierarchical levels the patterns suggest restricted gene flow with isolation by distance, whereas at higher levels the clades exhibit signatures of contiguous range expansion. Bayesian Skyline Plots show recent bottlenecks, followed by demographic expansions in all lineages. The significant genetic structure found is consistent with long-term survival of populations in allopatric refugia, supporting the 'refugia-within-refugia' scenario for southern European peninsulas. The comparison of our results with other co-distributed species highlights the generality of this hypothesis for the Iberian herpetofauna and suggests that Mediterranean refuges had more relevance for the composition and distribution of present biodiversity patterns than currently acknowledged. We briefly discuss the taxonomic and conservation implications of our results.
BackgroundLittle attention has been paid to the consequences of the last landbridge between Africa and Sicily on Mediterranean biogeography. Previous paleontological and scarce molecular data suggest possible faunal exchange later than the well-documented landbridge in the Messinian (5.3 My); however, a possible African origin of recent terrestrial Sicilian fauna has not been thoroughly tested with molecular methods. To gain insight into the phylogeography of the region, we examine two mitochondrial and two nuclear markers (one is a newly adapted intron marker) in green toads (Bufo viridis subgroup) across that sea barrier, the Strait of Sicily.ResultsExtensive sampling throughout the western Mediterranean and North Africa revealed a deep sister relationship between Sicilian (Bufo siculus n.sp.) and African green toads (B. boulengeri) on the mitochondrial and nuclear level. Divergence times estimated under a Bayesian-coalescence framework (mtDNA control region and 16S rRNA) range from the Middle Pliocene (3.6 My) to Pleistocene (0.16 My) with an average (1.83 to 2.0 My) around the Pliocene/Pleistocene boundary, suggesting possible land connections younger than the Messinian (5.3 My). We describe green toads from Sicily and some surrounding islands as a new endemic species (Bufo siculus). Bufo balearicus occurs on some western Mediterranean islands (Corsica, Sardinia, Mallorca, and Menorca) and the Apennine Peninsula, and is well differentiated on the mitochondrial and nuclear level from B. siculus as well as from B. viridis (Laurenti), whose haplotype group reaches northeastern Italy, north of the Po River. Detection of Calabrian B. balearicus haplotypes in northeastern Sicily suggests recent invasion. Our data agree with paleogeographic and fossil data, which suggest long Plio-Pleistocene isolation of Sicily and episodic Pleistocene faunal exchange across the Strait of Messina. It remains unknown whether both species (B. balearicus, B. siculus) occur in sympatry in northern Sicily.ConclusionOur findings on green toads give the first combined mitochondrial and nuclear sequence evidence for a phylogeographic connection across the Strait of Sicily in terrestrial vertebrates. These relationships may have implications for comparative phylogeographic research on other terrestrial animals co-occurring in North Africa and Sicily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.