SummaryThe human OX-40 cell surface antigen is a CD4 + T cell activation marker that acts as a costimulatory receptor and is a member of the nerve growth factor receptor/tumor necrosis factor (TNF) receptor family. Using a soluble form of the receptor, the extracellular region fused with human immunoglobulin Fc, we expression cloned the human OX-40 ligand cDNA from a library derived from an activated B lymphoblastoid cell line MSAB. The encoded protein is identified as gp34, a type II transmembrane antigen previously known to be expressed only by human T cell lymphotropic virus 1-infected cells. We describe gp34 as a new member of the TNF family, and find that the recombinant ligand expressed in COS cells costimulates phorbol myristate acetate, phytohemagglutinin, and anti-CD3-induced CD4 + T cell proliferation.
The study reported describes a combination of recombinant human bone morphogenetic protein-2 (rhBMP-2) and collagen (C) to regenerate bone. Unilateral critical-sized defects (CSDs) were prepared in radii of 32 skeletally mature New Zealand white rabbits. Rabbits were divided evenly among four treatments: autograft, absorbable C (Helistat), 35 microg of rhBMP-2 combined with absorbable C (rhBMP-2/C), and untreated CSDs. The two euthanasia periods were 4 and 8 weeks. Radiographs were taken the day of surgery, every 2 weeks, and at term and the percent of radiopacity was measured. Data analysis revealed a time-dependent increase in the percent radiopacity with rhBMP-2/C. Histological examination revealed the rhBMP-2/C treatment regenerated osseous contour by 8 weeks. According to quantitative histomorphometry, the CSD and C groups had significantly less new bone than either autograft or rhBMP-2/C (p < or = 0.05). The results suggest that rhBMP-2/C could be an effective therapy to restore segmental bone defects.
Experimental diabetes is associated with complex changes in renal nitric oxide (NO) bioavailability. We explored the effect of diabetes on renal cortical protein expression of endothelial NO synthase (eNOS) with respect to several determinants of its enzymatic function, such as eNOS expression, membrane localization, phosphorylation, and dimerization, in moderately hyperglycemic streptozotocininduced diabetic rats compared with nondiabetic control rats and diabetic rats with intensive insulin treatment to achieve near-normal metabolic control. We studied renal cortical expression and localization of caveolin-1 (CAV-1), an endogenous modulator of eNOS function. Despite similar whole-cell eNOS expression in all groups, eNOS monomer and dimer in membrane fractions were reduced in moderately hyperglycemic diabetic rats compared with control rats; the opposite trend was apparent in the cytosol. Stimulatory phosphorylation of eNOS (Ser1177) was also reduced in moderately hyperglycemic diabetic rats. eNOS colocalized and interacted with CAV-1 in endothelial cells throughout the renal vascular tree both in control and moderately hyperglycemic diabetic rats. However, the abundance of membrane-localized CAV-1 was decreased in diabetic kidneys. Intensive insulin treatment reversed the effects of diabetes on each of these parameters. In summary, we observed diabetes-mediated alterations in eNOS and CAV-1 expression that are consistent with the view of decreased bioavailability of renal eNOS-derived NO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.