The small GTPase Arl13b regulates ciliary transmembrane protein localizations and anterograde IFT assembly stability.
Abstract. Lipoxins (LX) are eicosanoids with antiinflammatory activity in glomerulonephritis (GN) and inflammatory diseases, hypersensitivity, and ischemia reperfusion injury. It has been demonstrated that LXA 4 stimulates non-phlogistic phagocytosis of apoptotic polymorphonuclear neutrophils (PMN) by monocyte-derived macrophages (M) in vitro, suggesting a role for LX as endogenous pro-resolution lipid mediators. It is here reported that LXA 4 , LXB 4 , the aspirin-triggered LX (ATL) epimer, 15-epi-LXB 4 , and a stable synthetic analogue 15(R/S)-methyl-LXA 4 stimulate phagocytosis of exogenously administered excess apoptotic PMN by macrophages (M) in vivo in a classic model of acute inflammation, namely thioglycollate-induced peritonitis. Significant enhancement of phagocytosis in vivo was observed with 15-min exposure to LX and with intraperitoneal doses of LXA 4 , LXB 4 , 15(R/S)-methyl-LXA 4 , and 15-epi-LXB 4 of 2.5 to 10 g/kg. Non-phlogistic LX-stimulated phagocytosis by M was sensitive to inhibition of PKC and PI 3-kinase and associated with increased production of transforming growth factor- 1 (TGF- 1 ). LX-stimulated phagocytosis was not inhibited by phosphatidylserine receptor (PSR) antisera and was abolished by prior exposure of M to 1,3-glucan, suggesting a novel M-PMN recognition mechanism. Interestingly, the recently described peptide agonists of the LXA 4 receptor (MYFINITL and LESI-FRSLLFRVM) stimulated phagocytosis through a process associated with increased TGF- 1 release. These data provide the first demonstration that LXA 4 , LXB 4 , ATL, and LX stable analogues rapidly promote M phagocytosis of PMN in vivo and support a role for LX as rapidly acting, proresolution signals in inflammation. Engagement of the LXR by LX generated during cell-cell interactions in inflammation and by endogenous LXR peptide agonists released from distressed cells may be an important stimulus for clearance of apoptotic cells and may be amenable to pharmacologic mimicry for therapeutic gain.Rapid, efficient and tightly regulated recruitment and clearance of polymorphonuclear neutrophil (PMN) at sites of inflammation are essential components of effective host defense. Evidence from in vitro models and from histopathology suggests that tissue damage mediated by PMN is limited by apoptosis and subsequent phagocytosis of the apoptotic PMN by macrophages (M) and "nonprofessional" phagocytes (1). A direct role for PMN in tissue injury in inflammation and ischemia reperfusion injury of the kidney and other organs is well established (2). Impaired clearance of apoptotic cells by M has been implicated in the pathogenesis of chronic inflammatory conditions, including glomerulonehritis (GN) and systemic lupus erythematosus (SLE) (3). The endogenous signals that promote clearance of apoptotic PMN from an inflammatory focus are still being defined. By dissecting out the mediator systems that regulate this process, it may be possible to design new pro-resolution strategies for inflammatory diseases.Lipoxins (LX), an acronym for...
BackgroundThe retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish.ResultsWe show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development.ConclusionZebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease.
We use high content cell analysis, live cell fluorescent imaging, and transmission electron microscopy approaches combined with inhibitors of cellular transport and nuclear import to conduct a systematic study of the mechanism of interaction of nonfunctionalized quantum dots (QDs) with live human blood monocyte-derived primary macrophages and cell lines of phagocytic, epithelial, and endothelial nature. Live human macrophages are shown to be able to rapidly uptake and accumulate QDs in distinct cellular compartment specifically to QDs size and charge. We show that the smallest QDs specifically target histones in cell nuclei and nucleoli by a multistep process involving endocytosis, active cytoplasmic transport, and entering the nucleus via nuclear pore complexes. Treatment of the cells with an anti-microtubule agent nocodazole precludes QDs cytoplasmic transport whereas a nuclear import inhibitor thapsigargin blocks QD import into the nucleus. These results demonstrate that the nonfunctionalized QDs exploit the cell's active transport machineries for delivery to specific intranuclear destinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.