[1] Atmospheric gravity waves have been a subject of intense research activity in recent years because of their myriad effects and their major contributions to atmospheric circulation, structure, and variability. Apart from occasionally strong lower-atmospheric effects, the major wave influences occur in the middle atmosphere, between ϳ 10 and 110 km altitudes because of decreasing density and increasing wave amplitudes with altitude. Theoretical, numerical, and observational studies have advanced our understanding of gravity waves on many fronts since the review by Fritts [1984a]; the present review will focus on these more recent contributions. Progress includes a better appreciation of gravity wave sources and characteristics, the evolution of the gravity wave spectrum with altitude and with variations of wind and stability, the character and implications of observed climatologies, and the wave interaction and instability processes that constrain wave amplitudes and spectral shape. Recent studies have also expanded dramatically our understanding of gravity wave influences on the large-scale circulation and the thermal and constituent structures of the middle atmosphere. These advances have led to a number of parameterizations of gravity wave effects which are enabling ever more realistic descriptions of gravity wave forcing in large-scale models. There remain, nevertheless, a number of areas in which further progress is needed in refining our understanding of and our ability to describe and predict gravity wave influences in the middle atmosphere. Our view of these unknowns and needs is also offered. INDEX TERMS: 3319
[1] A gravity wave anelastic dispersion relation is derived that includes molecular viscosity and thermal diffusivity to explore the damping of high-frequency gravity waves in the thermosphere. The time dependence of the wave amplitudes and general ray trace equations are also derived. In the special case that the thermal structure is isothermal and the Prandtl number (Pr) equals 1, exact linear solutions are obtained. For high-frequency gravity waves with w Ir /N ( 1 an upward propagating gravity wave dissipates at an altitude given by ' z 1 + H ln(w Ir /2Hjmj 3 n 1 ), where H is the density scale height, N is the buoyancy frequency, n 1 is the viscosity at z = z 1 , and w Ir and m are the gravity wave intrinsic frequency and vertical wave number, respectively. Thus high-frequency gravity waves with large vertical wavelengths dissipate at the highest altitudes, resulting in momentum and energy inputs extending to very high altitudes. We find that the vertical wavelength of a gravity wave with an initially large vertical wavelength decreases significantly by the time it dissipates just below where it begins to reflect. The effect of diffusion on a gravity wave is similar to the effect of shear in the sense that as the molecular viscosity and thermal diffusivity increase due to decreasing background density, the intrinsic frequency plus mn/H decreases and the vertical wave number increases in order to satisfy the dispersion relation for Pr = 1. We also briefly explore the results with different Prandtl numbers using numerical ray tracing. Gravity waves in a Pr = 0.7 environment dissipate just a few kilometers below those in a Pr = 1 environment when H = 7 km, showing the utility of the analytic, Pr = 1 solutions.Citation: Vadas, S. L., and D. C. Fritts (2005), Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity,
This paper provides a review of recent advances in our understanding of gravity wave saturation in the middle atmosphere. A brief discussion of those studies leading to the identification of gravity wave effects and their role in middle atmosphere dynamics is presented first. This is followed by a simple development of the linear saturation theory to illustrate the principal effects. Recent extensions to the linear saturation theory, including quasi‐linear, nonlinear, and transient effects, are then described. Those studies addressing the role of gravity wave saturation in the mean circulation of the middle atmosphere are also discussed. Finally, observations of gravity wave motions, distribution, and variability and those measurements specifically addressing gravity wave saturation are reviewed.
Contrary to its currently known characteristics, the nocturnal boundary layer over the Great Plains is frequently populated with a variety of turbulence-producing phenomena. C ASES-99 considers four scientific questions primarily related to the stable, nocturnal boundary layer, including the transition periods. The CASES-99 field program attempted to identify the sources and to quantify the physical characteristics of atmospheric phenomena occurring from the formative stages of the NBL 1 until its eventual breakup during the morning transition. The follow-up pro-1 Acronyms not defined in the text are defined in the appendix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.